griddb.github.io

— Introduction —

This documentation describes application programming for GridDB, primarily targeting those designers and developers engaged in system design and development with GridDB.

This documentation is organized as follows:

— Overview —

Development Language

GridDB application programming interfaces are of two types: NoSQL interface enabling basic data access and TQL execution, and New SQL interface enabling execution of SQL-92 compliant SQL.

NoSQL interface enables faster data registration and search than NewSQL interface because it bypasses SQL processing. By comparison, New SQL interface allows data analysis using SQL and access from BI (Business Intelligence) and ETL (Extract Transfer Load) tools, among others.

NoSQL interface and NewSQL interface
NoSQL interface and NewSQL interface
I/F Features Development Language API
NoSQL interface - basic data access and TQL execution
- GridDB-specific API
- fast processing including data registration and search
Java
C
Python
Node.js
Go
Java API
C API
Python API
Node.js API
Go API
NewSQL interface - execution of SQL-92 compliant SQL
- API complying with standard specification
- parallel distributed processing in SQL
Java
C
JDBC
ODBC(*1)

(*1) ODBC is used in linking with other systems including BI tools.

[Notes]

Support coverage

NoSQL interface and NewSQL interface differ in their support features and coverage of data types. This section explains support coverage of each interface. For the details on support coverage, see the Appendix.

Data types

GridDB data types are of two kinds: basic types and complex types. The two tables below shows which data types each interface supports.

Basic types

GridDB data types NoSQL interface NewSQL interface
BOOL types
STRING types
BYTE types
SHORT types
INTEGER types
LONG types
FLOAT types
DOUBLE types
TIMESTAMP types
GEOMETRY types
BLOB types

(Note: ✓:fully supported; △ partially supported; ✗: not supported)

Complex types

GridDB data types NoSQL interface NewSQL interface
BOOL array types
STRING array types
BYTE array types
SHORT array types
INTEGER array types
LONG array types
FLOAT array types
DOUBLE array types
TIMESTAMP array types

(Note: ✓:fully supported; ✗: not supported)

Features

The two tables below shows which GridDB features each interface supports.

Basic features

GridDB features NoSQL interface NewSQL interface
connection to clusters
container creation/deletion ✓(SQL)
row registration/deletion ✓(SQL)
TQL execution
SQL execution
commit/rollback ✗ only allows auto-commit
index creation/deletion ✓(SQL)
retrieval of a list of container names
retrieval of column information

Note: ✓: supported; ✓(SQL): supported by SQL; ✗: not supported

Extended features

GridDB features NoSQL interface NewSQL interface
affinity settings ✓(SQL)
partition container creation ✓(SQL)

(Note: ✓:fully supported; △ partially supported; ✗: not supported)

— Java API (NoSQL interface) —

Developing applications using Java API

Building a development/execution environment

To develop Java API applications, install the following packages:

package name file name description
griddb-ee-java-lib griddb-ee-java-lib-X.X.X-linux.x86_64.rpm
griddb-ee-java-lib_X.X.X_amd64.deb
contains Java API libraries (gridstore.jar, gridstore-conf.jar, gridstore-advanced.jar, gridstore-jdbc.jar).

Note: X.X.X. denotes the version of GridDB.

To develop or execute an application, specify the following library in the class path:

To secure communication between the GridDB cluster and the client, using the SSL function, additionally specify the following library in the class path.

Executing a sample program

This section explains how to compile and run a sample program.

For program compilation/execution, set the gridstore.jar library in the class path. Set other libraries, such as logging, as needed.

list of sample programs

category program name description container name to create
Connecting to a cluster Connect.java connects to a cluster using the multicast method and then disconnects the connection. -
Creating a collection (method) CreateCollectionByMethod.java creates a collection using a class definition to specify a schema. SampleJava_collection1
Creating a collection (class definition) CreateCollectionByClass.java creates a collection using a class definition to specify a schema. SampleJava_collection2
Creating a time-series container (method) CreateTimeSeriesByMethod.java creates a time-series container by specifying a schema using a method SampleJava_timeseries1
Registering a row PutRow.java registers one row per container SampleJava_PutRow
Registering multiple rows PutRows.java registers multiple rows per container SampleJava_PutRows
Retrieving a row GetRow.java specifies a row key to retrieve a row from a container SampleJava_GetRow
Searching for a row using a TQL TQLSelect.java retrieves a row using a TQL SELECT statement SampleJava_TQLSelect
Executing the TQL aggregate function TQLAggregation.java Executes an aggregation operation using a TQL statement. SampleJava_TQLAggregation
Registering a row in multiple containers MultiPut.java registers a bulk of rows in multiple containers SampleJava_MultiPut1, SampleJava_MultiPut2
Retrieving rows from multiple containers MultiGet.java retrieves a bulk of rows from multiple containers. SampleJava_MultiGet1, SampleJava_MultiGet2
Executing TQL on multiple containers FetchAll.java executes a bulk of TQLs on multiple containers. SampleJava_FetchAll1, SampleJava_FetchAll2
Registering/searching binary data BlobData.java registers binary data in a container and retrieves the data from a container SampleJava_BlobData
Updating a row UpdateRowByTQL.java updates a row using the RowSet retrieved by TQL SampleJava_UpdateRowByTQL
Deleting a row (row key) RemoveRowByRowkey.java specifies a row key to delete a row SampleJava_RemoveRowByRowkey
Deleting a row (TQL) RemoveRowByTQL.java deletes the row retrieved using TQL SampleJava_RemoveRowByTQL
Creating an index CreateIndex.java creates an index SampleJava_Index
Performing time-series operations TQLTimeseries.java performs various operations for time-series data SampleJava_TQLTimeseries
Handling array type data ArrayData.java registers/searches array type data SampleJava_ArrayData
Handling spatial type data GeometryData.java registers/searches spatial type data SampleJava_GeometryData
Retrieving a list of container names ContainerNames.java retrieves a list of container names
Retrieving schema information of a container ContainerInformation.java Retrieves schema information of a container SampleJava_Info
Using composite row keys to retrieve rows from multiple containers CompositeKeyMultiGet.java Uses composite row keys to retrieve a bulk of rows from multiple containers. SampleJava_CompositeKeyMultiGet1, SampleJava_CompositeKeyMultiGet2

Basic programming

This section explains basic programming using Java API.

Connecting to a cluster

Connect to a cluster for data registration/search and other operations In connection operation, use the following methods:

category method
GridStoreFactory instance retrieval GridStoreFactory GridStoreFactory.getInstance()
GridStore instance retrieval GridStore GridStoreFactory.getGridStore(java.util.Properties properties)

Below is a sample program for connecting to a cluster:

import java.util.Properties;

import com.toshiba.mwcloud.gs.GridStore;
import com.toshiba.mwcloud.gs.GridStoreFactory;

public class Connect {

	public static void main(String[] args){
		try {
			// (1)
			Properties prop = new Properties();
			prop.setProperty("notificationAddress", "239.0.0.1");
			prop.setProperty("notificationPort", "31999");
			prop.setProperty("clusterName", "myCluster");
			prop.setProperty("database", "public");
			prop.setProperty("user", "admin");
			prop.setProperty("password", "admin");
			prop.setProperty("applicationName", "SampleJava");

			// (2)
			GridStore store = GridStoreFactory.getInstance().getGridStore(prop);

			// (3)
			store.getContainer("dummyContainer");

			System.out.println("Connect to cluster");

			// (4)
			store.close();
			System.out.println("success!");

		} catch ( Exception e ){
			e.printStackTrace();
		}
	}
}

The following explains the connection operation in the program above.

(1) Specifies the connection information, including the cluster address, user, and password in the Java properties class.

(2) Creates a GridStore object based on the properties of the connection information.

(3) Once a container is created/retrieved using the GridStore object, a connection to the GridDB cluster will be enabled.

(4) A close disconnects the connection.

Connection methods

Three methods are available to connect to a cluster: multicast method, fixed list method, and provider method.

Connection methods description
multicast method method using multicast communication
fixed list method method where the addresses of all the nodes constituting the cluster are specified directly.
provider method method where the addresses of all the nodes constituting the cluster are provided by the provider.

In connecting to a cluster from an application, make sure to set the settings on the application side according to the connection method defined in the cluster definition file gs_cluster.json.

First, check which connection method is being used by referring to the cluster definition file gs_cluster.json. Then, enter the corresponding values in the Properties object according to the connection method.

Connection methods Property keys to specify
in the application
description values to be specified
multicast method notificationAddress

notificationPort
multicast address

multicast port number
/values of /transaction/notificationAddress

values of /transaction/notificationPort
fixed list method notificationMember a list of addresses and port numbers of nodes constituting the cluster list format values of /transaction/address and /transaction/port in /cluster/notificationMember
provider method notificationProvider provider’s URL values of /cluster/notificationProvider/url

Below are the descriptions of the cluster definition file gs_cluster.json and examples of the corresponding connection programs for each of the three connection methods.

example for the multicast method

example for the fixed list method

example for the provider method

Properties

Main properties other than connection methods include the following: For details on the rest of the properties and their descriptions, see the section “GridStoreFactory.getGridStore(java.util.Properties properties)” in GridDB Java API Reference.

item property key required values to be specified
cluster name clusterName required values specified in /cluster/clusterName in gs_cluster.json
database name database optional if connecting to a public database
If not, required.
name of the database to connect to
user name user required name of a user who is connecting (both administrative and general users are allowed)
password password required password of a user who is connecting
application name applicationName optional name to be used to distinguish an application
(shown when checking connection information and events being run using the gs_sh operation tool)
time zone timeZone optional Specify in hours and minutes using the pattern ±hh:mm or ±hhmm
time zone ID: supports only “Z.”
carry-over of a higher environment (JavaVM): auto
When omitted, equivalent to “Z”
authentication method authentication optional Specify either INTERNAL (internal authentication) or LDAP (LDAP authentication) as an authentication method to be used.
* If omitted, the authentication method is automatically selected.
SSL communication sslMode optional For SSL communication,
specify PREFERRED (follows the cluster settings),
VERIFY (SSL is valid, and server certificate validation is performed),
or DISABLED (SSL is invalid)
* If omitted, PREFERRED.
address of the interface to receive the multicast packets from notificationInterfaceAddress optional To configure the cluster network in multicast mode when multiple network interfaces are available, specify the IP address of the interface to receive the multicast packets from.
failover timeout failoverTimeout optional The number of seconds required for a client failover to start.
* When omitted, the value set for GridStoreFactory is used.
transaction timeout transactionTimeout optional the transaction timeouts (in seconds).
* When omitted, the value 300 (seconds) is used.

[Notes]

Creating a container

This section shows how to create a container. Containers come in two types: collections and time-series containers. To create a container, specify schemas, including column names and data types. The following two methods are available to specify a schema:

[Notes]

How to specify a schema using a method

Here a schema of a container is dynamically specified using a Java API method. For this purpose, use a container information class “ContainerInfo” and a column information class “ColumnInfo,” both of which represent a schema. The following lists the methods for creating a container using these classes.

category method
Creating a collection putCollection(String name, ContainerInfo info, boolean modifiable)
Creating a time-series container putTimeSeries(String name, ContainerInfo info, boolean modifiable)
Creating a container (collection, or time-series container) GridStore.putContainer(String name, ContainerInfo info, boolean modifiable)

[Notes]

Creating a collection with putCollection

Below is the entire program to create a collection using putCollection for creating a collection.

import java.util.ArrayList;
import java.util.List;
import java.util.Properties;

import com.toshiba.mwcloud.gs.Collection;
import com.toshiba.mwcloud.gs.ColumnInfo;
import com.toshiba.mwcloud.gs.ContainerInfo;
import com.toshiba.mwcloud.gs.GSType;
import com.toshiba.mwcloud.gs.GridStore;
import com.toshiba.mwcloud.gs.GridStoreFactory;
import com.toshiba.mwcloud.gs.Row;

public class CreateCollectionByMethod {

	public static void main(String[] args){
		try {
			Properties prop = new Properties();
			prop.setProperty("notificationAddress", "239.0.0.1");
			prop.setProperty("notificationPort", "31999");
			prop.setProperty("clusterName", "myCluster");
			prop.setProperty("database", "public");
			prop.setProperty("user", "admin");
			prop.setProperty("password", "admin");
			prop.setProperty("applicationName", "SampleJava");

			GridStore store = GridStoreFactory.getInstance().getGridStore(prop);
			store.getContainer("dummyContainer");

			// (1)
			ContainerInfo containerInfo = new ContainerInfo();

			// (2)
			List<ColumnInfo> columnList = new ArrayList<ColumnInfo>();
			columnList.add(new ColumnInfo("id", GSType.INTEGER));
			columnList.add(new ColumnInfo("productName", GSType.STRING));
			columnList.add(new ColumnInfo("count", GSType.INTEGER));

			// (3)
			containerInfo.setColumnInfoList(columnList);

			// (4)
			containerInfo.setRowKeyAssigned(true);

			// (5)
			Collection<Void, Row> collection = store.putCollection("SampleJava_collection1", containerInfo, false);

			System.out.println("Create Collection name=SampleJava_collection1");

			collection.close();
			store.close();
			System.out.println("success!");

		} catch ( Exception e ){
			e.printStackTrace();
		}
	}
}

The following explains the part of the program where a collection is created; refer to the comments in the program. (2) Sets column names and data types to column information “ColumnInfo.” If there is more than one column, a multiple number of ColumnInfo will be created. (3) Stores ColumnInfo in a list object and then sets it to container information “ContainerInfo” (5) With this data, creates a collection using putCollection.

[Notes]

Creating a time-series container with putTimeSeries

This section shows how to create a time-series container using putTimeseries for creating a time-series container. The overall flow of the program is the same as the program for creating a collection; only the differences are shown below.

// (1)
ContainerInfo containerInfo = new ContainerInfo();

// (2)
List<ColumnInfo> columnList = new ArrayList<ColumnInfo>();
columnList.add(new ColumnInfo("date", GSType.TIMESTAMP));
columnList.add(new ColumnInfo("value", GSType.DOUBLE));
containerInfo.setColumnInfoList(columnList);

// (3)
containerInfo.setRowKeyAssigned(true);

// (4)
TimeSeries<Row> timeseries = store.putTimeSeries("SampleJava_timeseries1", containerInfo, false);

System.out.println("Create TimeSeries name=SampleJava_timeseries1");

[Notes]

Creating a container with putContainer

The putContainer method for creating a container can create both a container and a time-series container. Set a type of a container and a time-series container using Container.Info.setType.

How to specify a schema using a class definition

Here a schema of a container is specified using a Java class definition. Java class variables will be mapped to the columns in a GridDB container.

ex.) mappings applied if the Java class is defined as below:

Columns are created in the same order as a sequence of class variables. For details about data type mappings, see the section “Interface Container<K,R>” in GridDB Java API Reference.

To specify the schema of a container by using Java class definitions, use the following methods:

category method
Creating a collection putCollection(String name, java.lang.Class rowType)
putCollection(String name, java.lang.Class rowType, boolean modifiable)
Creating a time-series container putTimeSeries(String name, java.lang.Class rowType)
putTimeSeries(String name, java.lang.Class rowType, TimeSeriesProperties props, boolean modifiable)
Creating a container (collection, or time-series container) putContainer(String name, java.lang.Class rowType, ContainerInfo info, boolean modifiable)

Below is the entire program for creating a collection with a row key, using putCollection for creating a collection. (Connection and termination procedures are the same as in previous programs.)

putTimeSeries for creating time-series containers and putContainer for creating containers follow the same program flow.

import java.util.Properties;

import com.toshiba.mwcloud.gs.Collection;
import com.toshiba.mwcloud.gs.GridStore;
import com.toshiba.mwcloud.gs.GridStoreFactory;
import com.toshiba.mwcloud.gs.RowKey;

public class CreateCollectionByClass {

    static class Product{
        @RowKey int id;
        String productName;
        int count;
    }

    public static void main(String[] args){
        try {
            Properties prop = new Properties();
            prop.setProperty("notificationAddress", "239.0.0.1");
            prop.setProperty("notificationPort", "31999");
            prop.setProperty("clusterName", "myCluster");
            prop.setProperty("database", "public");
            prop.setProperty("user", "admin");
            prop.setProperty("password", "admin");
            prop.setProperty("applicationName", "SampleJava");

            GridStore store = GridStoreFactory.getInstance().getGridStore(prop);
            store.getContainer("dummyContainer");

            Collection<Integer, Product> collection = store.putCollection("SampleJava_collection2", Product.class, false);

            System.out.println("Create Collection name=SampleJava_collection2");

            collection.close();
            store.close();
            System.out.println("success!");

        } catch ( Exception e ){
            e.printStackTrace();
        }
    }
}

[Notes]

Retrieving a container

This section shows how to retrieve a container by specifying its name. Retrieve a container first in order to register data and manipulate rows, such as TQL.

The following methods are available for container retrieval. These methods are categorized into the following two depending on the differences in the type of rows used in row manipulation.

Row interface

user-defined class

ex.) container retrieval (manipulating rows with the Row interface)

Collection<Integer, Row> collection = store.getCollection("collection1");
Row row = collection.get(0);

ex.) container retrieval (manipulating rows using a user-defined class)

static class Product{
    int id;
    String productName;
    int count;
}

// :

Collection<Integer, Product> collection = store.getCollection("collection1", Product.class);
Product product = collection.get(0);

Registering data

To register a row in a container, use the following methods:

category method
row registration Container.put(R row)

Below is the entire program for creating a collection and registering one row. (Connection and termination procedures are the same as in previous programs.)

import java.util.ArrayList;
import java.util.List;
import java.util.Properties;

import com.toshiba.mwcloud.gs.ColumnInfo;
import com.toshiba.mwcloud.gs.Container;
import com.toshiba.mwcloud.gs.ContainerInfo;
import com.toshiba.mwcloud.gs.GSType;
import com.toshiba.mwcloud.gs.GridStore;
import com.toshiba.mwcloud.gs.GridStoreFactory;
import com.toshiba.mwcloud.gs.Row;

public class PutRow {

    public static void main(String[] args){
        try {
            Properties prop = new Properties();
            prop.setProperty("notificationAddress", "239.0.0.1");
            prop.setProperty("notificationPort", "31999");
            prop.setProperty("clusterName", "myCluster");
            prop.setProperty("database", "public");
            prop.setProperty("user", "admin");
            prop.setProperty("password", "admin");
            prop.setProperty("applicationName", "SampleJava");

            GridStore store = GridStoreFactory.getInstance().getGridStore(prop);
            store.getContainer("dummyContainer");

            ContainerInfo containerInfo = new ContainerInfo();
            List<ColumnInfo> columnList = new ArrayList<ColumnInfo>();
            columnList.add(new ColumnInfo("id", GSType.INTEGER));
            columnList.add(new ColumnInfo("productName", GSType.STRING));
            columnList.add(new ColumnInfo("count", GSType.INTEGER));
            containerInfo.setColumnInfoList(columnList);
            containerInfo.setRowKeyAssigned(true);

            String containerName = "SampleJava_PutRow";
            store.putCollection(containerName, containerInfo, false);
            System.out.println("Create Collection name="+containerName);


            // (1)
            Container<?, Row> container = store.getContainer(containerName);
            if ( container == null ){
                throw new Exception("Container not found.");
            }

            // (2)
            Row row = container.createRow();

            // (3)
            row.setInteger(0, 0);
            row.setString(1, "display");
            row.setInteger(2, 150);

            // (4)
            container.put(row);

            System.out.println("Put Row num=1");

            container.close();
            store.close();
            System.out.println("success!");

        } catch ( Exception e ){
            e.printStackTrace();
        }
    }
}

The following explains how to register rows, referring to the program above. (1) Retrieves a container for registering rows. Null is returned if there is no container having the specified name. (2) Creates an empty row object from a container object. (3) Sets data to be registered in this empty row object. (4) Registers the rows in the container in step (1).

For more about mappings between GridDB data types and Java data types, see the section“data type mappings.”

[Notes]

Registering multiple rows in one container

Multiple rows can be registered all at once. For this purpose, use the following method:

category method
row registration Container.put(java.util.Collection rowCollection)

Below is a program for registering multiple rows using a put operation.

// (1)
Container<?, Row> container = store.getContainer(containerName);
if ( container == null ){
    throw new Exception("Container not found.");
}

// (2)
String[] nameList = {"notebook PC", "desktop PC", "keyboard", "mouse", "printer"};
int[] numberList = {108, 72, 25, 45, 62};

List<Row> rowList = new ArrayList<Row>();
for ( int i = 0; i < nameList.length; i++ ){
    Row row = container.createRow();
    row.setInteger(0, (i+1));
    row.setString(1, nameList[i]);
    row.setInteger(2, numberList[i]);
    rowList.add(row);
}

// (3)
container.put(rowList);

System.out.println("Put Rows num=" + nameList.length);

In this program, multiple row objects are created to set them in a list. Then the put operation is performed by specifying this list as an argument.

[Notes]

Retrieving data

Retrieving data means retrieving rows from a container.

In cases of containers with their row keys already set, rows can be retrieved by specifying row key values. If, on the other hand, row keys are not set, retrieve a row using TQL, as will be described later.

category method
row retrieval Container.get(K key)

Below is a program for retrieving a row with a row key value “0” from a collection with a row key.

// (1)
Container<Integer, Row> container = store.getContainer(containerName);
if ( container == null ){
    throw new Exception("Container not found.");
}

// (2)
Row row = container.get(0);
if ( row == null ){
    throw new Exception("Row not found");
}

// (3)
int id = row.getInteger(0);
String name = row.getString(1);
int count = row.getInteger(2);

System.out.println("Get Row id="+ id + ", name=" + name + ", count=" + count);

The following explains the operation to retrieve rows in the program above. (2) Specifies a row key in the get command to retrieve a row from a container. (3) To fetch column values from the retrieved row, uses the get method so as to match the data type of the column.

Executing a TQL

This section shows how to execute a TQL.

In TQL execution, the class of run results and their processing method vary according to the type of SELECT selection formulas.

types of SELECT selection formulas description class type of execution results
row (*) retrieves rows stored in a container.
ex.) SELECT * FROM container1
row object type of a container
(type of R in Container<K,R>)
aggregation operations (including MAX, MIN, and COUNT) retrieves the result of an aggregation operation.
ex.) SELECT COUNT(*) FROM container1
AggregationResult type

[Notes]

Searching for a row

To execute a TQL for searching for row values, use the methods below:

category method
query creation Query<R> Container<K,R>.query(java.lang.String tql)
query execution RowSet<R> Query<R>.fetch()

The following is a TQL program for searching a collection for rows whose column count exceeds 50 and returning the search result sorted by ascending order of id.

// (1)
Container<?, Row> container = store.getContainer(containerName);
if ( container == null ){
    throw new Exception("Container not found.");
}

// (2)
Query<Row> query = container.query("SELECT * WHERE count >= 50 ORDER BY id");
RowSet<Row> rs = query.fetch();

// (3)
while ( rs.hasNext() ) {
    Row row = rs.next();
    int id = row.getInteger(0);
    String name = row.getString(1);
    int count = row.getInteger(2);
    System.out.println("row id=" + id + ", name=" + name + ", count=" + count);
}

The following explains the search operation in the program above. (2) Creates a query using a TQL to be executed and performs search using the fetch command. (3) Retrieves search results; retrieves row values using the get method so as to match the data type of a column in a container.

Performing an aggregation operation

To execute a TQL for an aggregation operation, use the following methods:

category method
query creation Query<S> Container<K,R>.query(java.lang.String tql, java.lang.Class<S> rowType)
query execution RowSet<S> Query<S>.fetch()

The following is a program for retrieving the maximum column value from a collection.

// (1)
Query<AggregationResult> query = container.query("SELECT MAX(value)", AggregationResult.class);
RowSet<AggregationResult> rs = query.fetch();

// (2)
if ( rs.hasNext() ){
    AggregationResult result = rs.next();
    long value = result.getLong();
    System.out.println("max = "+ value);
}

(1) When creating queries, specifies AggretationResult which refers to the type of aggregation operation results as the second argument. The results of query execution are returned by the object AggregationResult. (2) The data type of values of the object AggregationResult varies according to the type of aggregation operations performed. Values are retrieved using getLong, getDouble, or getTimestamp, according to the data type.

Below is a list of aggregation operations in TQL

aggregation operations in TQL description operation arguments value type of operation results (AggregationResult)
MAX(column) maximum value of the specified column numerical or TIMESTAMP-type column type identical to the specified column
MIN(column) minimum value of the specified column numerical or TIMESTAMP-type column type identical to the specified column
COUNT(*) number of rows to be aggregated only “*” LONG types
SUM(column) sum of the specified columns numerical column LONG type if the specified column is of integer type
LONG type if the specified column is of floating-point type
AVG(column) average of the specified columns numerical column DOUBLE types
VARIANCE(column) variance of the specified columns numerical column DOUBLE types
STDDEV(column) standard deviation of the specified columns numerical column DOUBLE types

[Notes]

Performing a bulk of operations on multiple containers

Data registration and search operations allow multiple operations to be performed at once. The following are the methods for multiple containers.

category method
Registering a row in multiple containers GridStore.multiPut(java.util.Map<java.lang.String,java.util.List> containerRowsMap)
Retrieving rows from multiple containers GridStore.multiGet(java.util.Map<java.lang.String,? extends RowKeyPredicate<?>> containerPredicateMap)
Executing a TQL on multiple containers GridStore.fetchAll(java.util.List<? extends Query<?>> queryList)

Operations on one container and operations on multiple containers differ in methods, retrieval criteria, and other properties; use the one that best suits your purpose. The table below shows the differences among them. For explanations on each method, refer to the links in this document.

category container to be processed method retrieval criteria links in this document
row registration one Container.put(R row)
Container.put(java.util.Collection rowCollection)
- Registering data
  more than one GridStore.multiPut(java.util.Map<java.lang.String, java.util.List> containerRowsMap) - Registering a row in multiple containers
row retrieval
(by specifying a row key)
one Container.get(K key) row key specified Retrieving data
  more than one GridStore.multiGet(java.util.Map<java.lang.String, ? extends RowKeyPredicate<?>> containerPredicateMap) Row key range specification or row key range specification, using the RowKeyPredicate class Retrieving rows from multiple containers
Row retrieval
(TQL execution)
one GridStore.query(java.lang.String tql)
Query.fetch()
TQL queries Executing a TQL
  more than one GridStore.fetchAll(java.util.List<? extends Query<?>> queryList) TQL queries Executing a TQL on multiple containers

Registering a row in multiple containers

Multiple rows are registered in multiple containers. For this, you can register rows using multiPut by creating pairs of container names and a list of rows to be registered.

category method
Registering a row in multiple containers GridStore.multiPut(java.util.Map<java.lang.String,java.util.List> containerRowsMap)

The following program shows how to register two rows in both collections and time-series containers.

Map<String, List<Row>> paramMap = new HashMap<String, List<Row>>();

// (1)
{
    String containerName = "SampleJava_MultiPut1";
    Container<Integer, Row> container = store.getContainer(containerName);
    if ( container == null ){
        throw new Exception("Container not found.");
    }

    String[] nameList = {"notebook PC", "desktop PC", "keyboard", "mouse", "printer"};
    int[] numberList = {55, 81, 39, 72, 14};

    List<Row> rowList = new ArrayList<Row>();
    for ( int i = 0; i < nameList.length; i++ ){
        Row row = container.createRow();
        row.setInteger(0, (i+1));
        row.setString(1, nameList[i]);
        row.setInteger(2, numberList[i]);
        rowList.add(row);
    }
    paramMap.put(containerName, rowList);
}

// (2)
{
    String containerName = "SampleJava_MultiPut2";
    Container<Integer, Row> container = store.getContainer(containerName);
    if ( container == null ){
        throw new Exception("Container not found.");
    }

    String[] dateList = {"2018/12/01 10:20:19.111+0900", "2018/12/02 03:25:45.023+0900",
                    "2018/12/03 08:29:21.932+0900", "2018/12/04 21:55:48.153+0900"};
    double[] valueList = { 129.9, 13.2, 832.7, 52.9 };

    SimpleDateFormat format = new SimpleDateFormat("yyyy/MM/dd hh:mm:ss.SSSZ");

    List<Row> rowList = new ArrayList<Row>();
    for ( int i = 0; i < dateList.length; i++ ){
        Row row = container.createRow();
        row.setTimestamp(0, format.parse(dateList[i]));
        row.setDouble(1, valueList[i]);
        rowList.add(row);
    }
    paramMap.put(containerName, rowList);
}

// (3)
store.multiPut(paramMap);

System.out.println("MultiPut");

Just like when registering a row in one container, create an empty row from a container object to create rows to be registered. Then store pairs of containers and rows and register them together using multiPut.

[Notes]

Retrieving rows from multiple containers

The following explains how to retrieve rows that meet the specified criteria from multiple containers.

category method
Retrieving rows from multiple containers GridStore.multiGet(java.util.Map<java.lang.String,? extends RowKeyPredicate<?>> containerPredicateMap)

Criteria on row keys can be specified per container. There are two types of criteria: individual criteria, which specify specific values, and range criteria, which specify the value range. Specify criteria using a method in the RowKeyPredicate class.

criteria method
individual criteria on row keys RowKeyPredicate.add(K key)
range criteria on row keys RowKeyPredicate.setStart(K startKey)
RowKeyPredicate.setFinish(K finishKey)

[Notes]

Below is a program for retrieving from a collection a row whose INTEGER-type row key value is equivalent to “0” and then retrieving from another collection a row whose INTEGER-type row key value is equivalent to “2” or “4”.

// (1)
Map<String, RowKeyPredicate<Integer>> predMap = new HashMap<String, RowKeyPredicate<Integer>>();
{
  RowKeyPredicate<Integer> predicate = RowKeyPredicate.create(Integer.class);
  predicate.add(0);
  predMap.put("SampleJava_MultiGet1", predicate);
}
{
  RowKeyPredicate<Integer> predicate = RowKeyPredicate.create(Integer.class);
  predicate.add(2);
  predicate.add(4);
  predMap.put("SampleJava_MultiGet2", predicate);
}

// (2)
Map<String, List<Row>> outMap = store.multiGet(predMap);

System.out.println("MultiGet");

// (3)
for (Map.Entry<String, List<Row>> entry : outMap.entrySet()) {
  System.out.println("containerName="+entry.getKey());

  for (Row row : entry.getValue()) {
    int id = row.getInteger(0);
    String name = row.getString(1);
    int count = row.getInteger(2);

    System.out.println("    id=" + id + " name=" + name +" count=" + count);
  }
}

(1) Using the class RowKeyPredicate, creates conditions on rows to be retrieved and store pairs of container names and RowKeyPredicate in MAP. (2) Performs search using multiGet. (3) The results are returned as a combination of container names and row lists.

Executing a TQL on multiple containers

TQL is executed on multiple containers. TQL can be specified per container.

category method
Executing a TQL on multiple containers GridStore.fetchAll(java.util.List<? extends Query<?>> queryList)

The following is a program for executing two TQLs together, each corresponding to a collection, to retrieve rows.

List<Query<Row>> queryList = new ArrayList<Query<Row>>();

// (1)
{
  Container<Integer, Row> container = store.getContainer("SampleJava_FetchAll1");
  if ( container == null ){
    throw new Exception("Container not found.");
  }
  queryList.add(container.query("select * where count > 60"));
}
// (2)
{
  Container<Integer, Row> container = store.getContainer("SampleJava_FetchAll2");
  if ( container == null ){
    throw new Exception("Container not found.");
  }
  queryList.add(container.query("select * where count > 100"));
}

// (3)
store.fetchAll(queryList);

// (4)
for (int i = 0; i < queryList.size(); i++) {
  System.out.println("SampleJava_FetchAll"+(i+1));
  Query<Row> query = queryList.get(i);
  RowSet<Row> rs = query.getRowSet();

  while (rs.hasNext()) {
    Row row = rs.next();
    int id = row.getInteger(0);
    String name = row.getString(1);
    int count = row.getInteger(2);
    System.out.println("    row id=" + id + ", name=" + name + ", count=" + count);
  }
}

(1)(2) Creates TQL queries from container objects and stores them in a list. (3) Specifies a list of queries and execute fetchAll to execute all TQLs together. (4) Search results are stored in the query list specified in (3). .

Handling binary data

This section shows how to register and retrieve binary data. The data type for binary data is Blob type. You can manipulate binary data like other data types.

Registering binary data

The program below loads binary data from a file and registers rows.

import java.sql.Blob;

// (1)
FileInputStream blobFile = new FileInputStream(new File("BlobData.java"));
Blob blob = container.createBlob();
OutputStream blobBuffer = blob.setBinaryStream(1);
int len = -1;
while ((len = blobFile.read()) > -1) {
  blobBuffer.write(len);
}
blobBuffer.flush();

// (2)
Row row = container.createRow();
row.setInteger(0, 0);
row.setBlob(1, blob);

// (3)
container.put(row);

System.out.println("Put Row (Binary)");

blobFile.close();

(1) Loads binary data from a file. The Blob for storing binary data can be created using the createBlob method in the Container class. It is also possible to use instances in another class where Blob (eg. SerialBlob) has been implemented. (2) Sets binary data using setBlob, and (3) registers rows.

Retrieving binary data

Use getBlob to retrieve binary data.

Row row = container.get(0);
Blob blob = row.getBlob(1);

Updating data

Updating data means updating rows. There are two ways to update rows. One is to update them by specifying row keys, and the other is to update them using the execution results of a TQL.

category method
Updating rows by specifying row keys put(R row)
put(K key, R row)
put(java.util.Collection rowCollection)
Updating rows based on TQL run results RowSet.update(R rowObj)

In the first method, where rows are updated by specifying the corresponding row keys, data are only updated if data already exist that contain the same row key as the row specified by the put operation. If there exist no row key data, or if row keys are not set in the collection, executing the command put will always register new rows.

Below is a program for updating rows based on TQL run results.

Container<Integer, Row> container = store.getContainer(containerName);
if ( container == null ){
  throw new Exception("Container not found.");
}

// (1)
container.setAutoCommit(false);

// (2)
Query<Row> query = container.query("SELECT * WHERE id = 3");
RowSet<Row> rs = query.fetch(true);

// (3)
while( rs.hasNext() ){
  Row row = rs.next();

  row.setInteger(2, 77);

  rs.update(row);
}

// (4)
container.commit();

System.out.println("Update Row");

[Notes]

Deleting data

Deleting data means deleting rows. There are two ways to delete rows. One is to delete them by specifying row keys, and the other is to delete them from the search results of a TQL.

category method
deleting rows by specifying row keys Container.remove(K key)
TimeSeries.remove(java.util.Date key)
deleting rows from TQL search results RowSet.remove()

Below is a program for deleting rows whose row key value is “3” using the first method, namely, by specifying row keys to delete rows.

container.remove(3);

Below is another program for deleting rows using the second method, namely, by deleting rows from TQL search results

Container<Integer, Row> container = store.getContainer(containerName);
if ( container == null ){
  throw new Exception("Container not found.");
}

// (1)
container.setAutoCommit(false);

// (2)
Query<Row> query = container.query("SELECT * WHERE id = 50");
RowSet<Row> rs = query.fetch(true);

// (3)
while( rs.hasNext() ){
  Row row = rs.next();

  row.setInteger(2, 77);

  rs.update(row);
}

// (4)
container.commit();

System.out.println("Update Row");

[Notes]

Deleting a container

The following shows how to delete containers by specifying their names. The following methods can be used to delete containers:

category method
collection deletion GridStore.dropCollection(java.lang.String name)
time-series container deletion GridStore.dropTimeSeries(java.lang.String name)
container deletion GridStore.dropContainer(java.lang.String name)

[Notes]

Below is a program for deleting the collection “collection1”.

store.dropCollection("collection1");

Creating an index

The following shows how to create an index in a column in a container.

Two types of indexes are available, as shown below: The index types that can be specified depend on the container type and the data type of columns.

index type description
tree index - an index that uses B trees;
- suits search with equality condition (=) and range search (eg. > and <=);
- not applicable if the data type of columns is spatial-type, BLOB-type, or array-type. Also not applicable to the row key for a time-series container.
- allows to create composite indexes.
spatial index - an index for spatial types;
- suits high-speed spatial search;
- only applicable to a collection, whose column data is of spatial type.

The following three methods are available for index creation, which differ in how index types and columns are specified:

category method
index creation (specify a column name and number, an index type, and an index name) Container.createIndex(IndexInfo info)
index creation (specify a column name) Container.createIndex(java.lang.String columnName)
index creation (specify a column name and an index type) Container.createIndex(java.lang.String columnName, IndexType type)

[Notes]

The following is a program fro creating a tree index in the column count of a collection using createIndex(IndexInfo info) for creating an index.

// (1)
IndexInfo indexInfo = new IndexInfo();
indexInfo.setColumnName("count");
indexInfo.setType(IndexType.TREE);
indexInfo.setName("tree_index");

// (2)
container.createIndex(indexInfo);

// (3)
IndexInfo compositeInfo = new IndexInfo();
compositeInfo.setColumnNameList(Arrays.asList("count","productName"));
compositeInfo.setType(IndexType.TREE);
compositeInfo.setName("composite_index");

// (4)
container.createIndex(compositeInfo);

For the index information IndexInfo, specify the index type, the column to be created (column number or column name), and the index name.
(2) Execute createIndex with IndexInfo as an argument.
(3) In composite indexes, use the List form to specify the column to be created (column number or column name), that is specified in the index information IndexInfo.
(4) Execute createIndex with IndexInfo as an argument.

Others

Data type mappings

The following shows mappings between GridDB data types and Java data types. When retrieving and setting values from a row, use the following data types:

GridDB data types Java data types
BOOL types boolean
STRING types java.lang.String
BYTE types byte
SHORT types short
INTEGER types int
LONG types long
FLOAT types float
DOUBLE types double
TIMESTAMP types java.util.Date
GEOMETRY types Geometry
BLOB types java.sql.Blob

Error handling

If an error occurs in the Java API method, GSException is thrown.

Errors are handled using getErrorCode() for retrieving error codes and printStackTrace() for displaying a stack trace.

TIMESTAMP type utility function

In Java API, TIMESTAMP type data is treated as java.util.Date type. The following methods are available as utility functions for the TIMESTAMP type.

category method
Retrieving the current time TimestampUtils.current()
TimestampUtils.currentCalendar()
Adding time TimestampUtils.add(java.util.Date timestamp, int amount, TimeUnit timeUnit)
TimestampUtils.add(java.util.Date timestamp, int amount, TimeUnit timeUnit, java.util.TimeZone zone)
Converting GSTimestamp type into a string representation TimestampUtils.format(java.util.Date timestamp)
TimestampUtils.format(java.util.Date timestamp, java.util.TimeZone zone)
Converting a string representation into GSTimestamp type TimestampUtils.parse(java.lang.String source)
Retrieving the notation format of TIMESTAMP values TimestampUtils.getFormat()
TimestampUtils.getFormat(java.util.TimeZone zone)

Below is an example to convert TIMESTAMP type values retrieved from rows into a string representation.

Date date = row.getTimestamp(0);
String dateStr = TimestampUtils.format(date)

Advanced programming

Handling time-series data

Operations specific to time-series data can be executed on a time-series container. This section explains operations specific to time-series data.

Such operations can be executed using TQL or the methods listed below:

category name TQL operation method
Aggregation operation weighted average TIME_AVG TimeSeries.aggregate
(Specify Aggregation.WEIGHTED_AVERAGE)
Selection operation time immediately after TIME_NEXT TimeSeries.get
(Specify TimeOperator.NEXT)
  time immediately after TIME_NEXT_ONLY TimeSeries.get
(Specify TimeOperator.NEXT_ONLY)
  time immediately before TIME_PREV TimeSeries.get
(Specify TimeOperator.PREVIOUS)
  time immediately before TIME_PREV_ONLY TimeSeries.get
(Specify TimeOperator.PREVIOUS_ONLY)
Interpolation operation linear interpolation TIME_INTERPOLATED TimeSeries.interpolate
  sampling TIME_SAMPLING TimeSeries.query
(Specify InterpolationMode)

The following explains programming with TQL operations as an example.

Aggregation operation

TIME_AVG: weighted time average

The operation TIME_AVG calculates the average weighted by time intervals for rows. The longer the time intervals, the greater the weights. In other words, for the period in which no values are registered, the immediately preceding value is treated as remaining constant for the first half and the immediately following value is treated as if it remaining constant for the rest.

TQL operation description operation arguments type of operation results
TIME_AVG(column) weighted average based on the time of a row in the specified column numerical columns in a time-series container DOUBLE types

[Notes]

TQL selection operations

A selection operation returns a row whose time of a row key in a time-series container matches the specified time (timestamp), based on the selection criteria on immediately before/after.

TQL selection operations description
TIME_NEXT(*, timestamp) returns a row whose time is immediately after the specified time (timestamp)
If a row with the identical timestamp exists, returns that row.
TIME_NEXT_ONLY(*, timestamp) returns a row whose time is immediately after the specified time (timestamp)
TIME_PREV(*, timestamp) returns a row whose time is immediately before the specified time (timestamp)
If a row with the identical timestamp exists, returns that row.
TIME_PREV_ONLY(*, timestamp) returns a row whose time is immediately before the specified time (timestamp)

[Notes]

TQL interpolation operations

This section shows how time-series data is interpolated.

TQL interpolation operations description operation arguments
TIME_INTERPOLATED(column, timestamp) If a row with the specified time (timestamp) does not exist, returns interpolated values for column. column: numerical column
timestamp: time
TIME_SAMPLING(*|column, timestamp_start, timestamp_end, interval, time_unit) For the specified duration, returns the result of row sampling. timestamp_start: start time
timestamp_end: end time
interval: sampling interval
time_unit: unit of sampling intervals (DAY|HOUR|MINUTE|SECOND|MILLISECOND)

TIME_INTERPOLATED(column, timestamp): interpolation of values

TIME_SAMPLING(*|column, timestamp_start, timestamp_end, interval, time_unit): sampling of values

[Notes]

Handling array type data

Array type data is mapped to Java arrays. The Row class contains array type setter/getter methods for setting and retrieving array type data. Use the setter/getter method appropriate for the array data type to register and retrieve data.

category method
Boolean type array void Row.setBoolArray(int column, boolean[] fieldValue)
boolean[] Row.getBoolArray(int column)
STRING type array void Row.setStringArray(int column, java.lang.String[] fieldValue)
java.lang.String[] Row.getStringArray(int column)
BYTE type array void Row.setByteArray(int column, byte[] fieldValue)
byte[] Row.getByteArray(int column)
SHORT type array void Row.setShortArray(int column, short[] fieldValue)
short[] Row.getShortArray(int column)
INTEGER type array void Row.setIntegerArray(int column, int[] fieldValue)
int[] Row.getIntegerArray(int column)
LONG type array void Row.setLongArray(int column, long[] fieldValue)
long[] Row.getLongArray(int column)
FLOAT type array void Row.setFloatArray(int column, float[] fieldValue)
float[] Row.getFloatArray(int column)
DOUBLE type array void Row.setDoubleArray(int column, double[] fieldValue)
double[] Row.getDoubleArray(int column)
TIMESTAMP type array void Row.setTimestampArray(int column, java.util.Date[] fieldValue)
java.util.Date[] Row.getTimestampArray(int column)

Below is a program for registering array type data.

String[] stringArray = {"Sales", "Development", "Marketing", "Research"};
int[] integerArray = {39, 92, 18, 51 };

Row row = container.createRow();
row.setInteger(0, 0);
row.setStringArray(1, stringArray);
row.setIntegerArray(2, integerArray);

container.put(row);

Below is a program for retrieving array type data.

Row row = container.get(0);

String[] stringArray = row.getStringArray(1);
int[] integerArray = row.getIntegerArray(2);

[Notes]

Handling spatial type data

This section explains how to register and retrieve spatial type data.

Operations are performed by creating the Geometry object from values in Well-Known Text (WKT) format which represent spatial type data. WKT format is an ISO standard used to represent spatial data in a textual format.

The Row class includes array type setter/getter methods for setting and retrieving spatial type data. Register/retrieve spatial type data using these setters/getters.

category method
Setting of spatial type data void Row.setGeometry(int column, Geometry fieldValue)
Extraction of spatial type data Geometry getGeometry(int column)

Below is a program for registering spatial type data.

import com.toshiba.mwcloud.gs.Geometry;

Geometry geometry = Geometry.valueOf("POINT(2 3)");

Row row = container.createRow();
row.setInteger(0, 0);
row.setGeometry(1, geometry);

container.put(row);

Below is a program for retrieving spatial type data.

import com.toshiba.mwcloud.gs.Geometry;

Row row = container.get(0);

Geometry geometry = row.getGeometry(1);

[Notes]

Retrieving container information

This section explains the operation for retrieving information on containers.

Retrieving a list of container names

The following methods retrieve a list of the containers that have been created.

To retrieve a list of container names, use a controller “PartitionController” instance for retrieving partition information.

category method
Retrieving partition controllers GridStore.getPartitionController()
Retrieving the number of partitions PartitionController.getPartitionCount()
Retrieving a list of container names PartitionController.getContainerNames(int partitionIndex, long start, java.lang.Long limit)

A list of container names can be retrieved for each partition via a partition controller. Below is a program for retrieving a list of container names.

// (1)
PartitionController partitionController = store.getPartitionController();
int partitionCount = partitionController.getPartitionCount();

// (2)
for (int i = 0; i < partitionCount; i++) {
    List<String> containerNames = partitionController.getContainerNames(i, 0, null);
    if ( containerNames.size() > 0 ){
        System.out.println(containerNames);
    }
}

(2) If the second argument is specified as 0, and the third argument as NULL using the method getContainerName, all containers on the specified partition will be retrieved. To limit the number of container names to retrieve, specify that number of limits as the third argument.

[Notes]

Retrieving schema information of a container

Retrieve information about containers from the container information “ContainerInfo.”

category method
Retrieving container information GridStore.getContainerInfo(java.lang.String name)

ContainerInfo contains setter methods to retrieve various information. Use whichever method that retrieves information needed. For details about methods, see GridDB Java API Reference.

The following is a program for retrieving information on containers and indexes.

ContainerInfo containerInfo = store.getContainerInfo(containerName);

String name = containerInfo.getName();
ContainerType type = containerInfo.getType();
System.out.println("name=" + name +", type="+type);

for (int i = 0; i < containerInfo.getColumnCount(); i++){
  ColumnInfo info = containerInfo.getColumnInfo(i);

  String columnName = info.getName();
  GSType columnType = info.getType();
  boolean columnNullable = info.getNullable();
  Set<IndexType> indexTypes = info.getIndexTypes();

  System.out.println("column name="+columnName+", type="+columnType+", nullable="+columnNullable);
  if ( indexTypes.size() > 0 ) System.out.println("       indexTypes="+indexTypes);
}

Handling composite row keys

In processing for data registration and retrieval, operations can be performed by specifying composite row keys.

Below is a program for registering the data set with composite row keys. As composite row keys, specify the first INTEGER type and the second STRING type.

// (1)
ContainerInfo containerInfo = new ContainerInfo();
containerInfo.setType(ContainerType.COLLECTION);
List<ColumnInfo> columnList = new ArrayList<ColumnInfo>();
columnList.add(new ColumnInfo("id", GSType.INTEGER));
columnList.add(new ColumnInfo("productName", GSType.STRING));
columnList.add(new ColumnInfo("count", GSType.INTEGER));
containerInfo.setColumnInfoList(columnList);

// (2)
containerInfo.setRowKeyColumnList(Arrays.asList(0, 1));

// (3)
Container<?, Row> container = store.putContainer("SampleJava_CompositeKeyMultiGet1", containerInfo, false);

// (4)
String[] nameList = {"notebook PC", "desktop PC", "keyboard", "mouse", "printer"};
int[] numberList = {108, 72, 25, 45, 62};
List<Row> rowList = new ArrayList<Row>();
for ( int i = 0; i < nameList.length; i++ ){
    Row row = container.createRow();
    row.setInteger(0, i);
    row.setString(1, nameList[i]);
    row.setInteger(2, numberList[i]);
    rowList.add(row);
}
container.put(rowList);

Below is a program for retrieving data that meets the criteria specified by composite row keys. It specifies individual criteria to retrieve from the first container a row whose INTEGER-type row key value is “0” and whose STRING-type row key value matches “notebook PC,” and from the second container a row whose INTEGER-type row key value is “2” and whose STRING-type row key value matches “keyboard” and a row whose INTEGER-type row key value is “4” and whose STRING-type row key value matches “printer.”

// (1)
Map<String, RowKeyPredicate<Key>> predMap = new HashMap<String, RowKeyPredicate<Key>>();
{
    RowKeyPredicate<Key> predicate = RowKeyPredicate.create(containerInfo);
    Key rowKey = store.createRowKey(containerInfo);
    rowKey.setInteger(0,  0);
    rowKey.setString(1,  "notebook PC");
    predicate.add(rowKey);
    predMap.put("SampleJava_CompositeKeyMultiGet1", predicate);
}
{
    RowKeyPredicate<Key> predicate = RowKeyPredicate.create(containerInfo);

    Key rowKey = store.createRowKey(containerInfo);
    rowKey.setInteger(0,  2);
    rowKey.setString(1,  "keyboard");
    predicate.add(rowKey);
    rowKey.setInteger(0,  4);
    rowKey.setString(1,  "printer");
    predicate.add(rowKey);

    predMap.put("SampleJava_CompositeKeyMultiGet2", predicate);
}

// (2)
Map<String, List<Row>> outMap = store.multiGet(predMap);
System.out.println("CompositeKeyMultiGet");

// (3)
for (Map.Entry<String, List<Row>> entry : outMap.entrySet()) {
    System.out.println("containerName="+entry.getKey());

    for (Row row : entry.getValue()) {
        int id = row.getInteger(0);
        String name = row.getString(1);
        int count = row.getInteger(2);

        System.out.println("    id=" + id + " name=" + name +" count=" + count);
    }
}

[Notes]

— C API (NoSQL interface) —

Application development using C API (Linux)

Building a development/execution environment

To develop a C API application, install the following packages first:

package name file name description
griddb-ee-c-lib griddb-ee-c-lib-X.X.X-linux.x86_64.rpm
griddb-ee-c-lib_X.X.X_amd64.deb
Includes a C header and library files.
(/usr/include/gridstore.h, /usr/lib64/libgridstore.so, libgridstore_advanced.so)

Note: X.X.X. denotes the version of GridDB.

[Memo] The header and the library path of RHEL and CentOS are:

In developing or executing applications, set LD_LIBRARY_PATH to the path /usr/lib64.

Example for configuring RHEL and CentOS)

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/lib64

Example for configuring Ubuntu Server)

$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/lib/x86_64-linux-gnu

How to build a program

This section explains how to compile and run a sample program.

To compile a program, specify the library “gridstore” with the -l option. Execute the created execution file.

Application development using the C API (Windows)

Building a development/execution environment

C API libraries for Windows can be found in the “\Windows \C-API” directory in the installation media. (gridstore_c.lib, gridstore.h, gridstore_c.dll, msvcp140.dll, vcruntime140.dll, gridstore_advanced.dll, libssl-1_1-x64.dll, libcrypto-1_1-x64.dll)

The library is a 64-bit dll. There is no dedicated installer. Copy this DLL to a Windows client PC. Copy gridstore_c.dll., gridstore_advanced.dll, libssl-1_1-x64.dll, and libcrypto-1_1-x64.dll to the directory specified by the environment variable “PATH”. These dlls have been created using Visual Studio 2019. If the runtime library for Visual Studio 2019 has not been installed, copy msvcp140.dll and vcruntime140.dll. (You can download the runtime library for Visual Studio 2019 “Microsoft Visual C++ Redistributable for Visual Studio 2019” from the Microsoft official page.)

How to build a program

This section explains how to compile a program.

<How to create a VisualStudio project file>

  1. Create an x64 project
  1. Set the Include directory.
  1. Set an import library (gridstore_c.lib)

list of sample programs

category program name description container name to create
Connecting to a cluster Connect.c connects to a cluster using the multicast method and then disconnects the connection. -
Creating a collection (method) CreateCollectionByMethod.c creates a collection using a class definition to specify a schema. SampleC_collection1
Creating a collection (class definition) CreateCollectionByClass.c creates a collection using a class definition to specify a schema. SampleC_collection2
Creating a time-series container (method) CreateTimeSeriesByMethod.c creates a time-series container by specifying a schema using a method SampleC_timeseries1
Registering a row PutRow.c registers one row per container SampleC_PutRow
Registering multiple rows PutRows.c registers multiple rows per container SampleC_PutRows
Retrieving a row GetRow.c specifies a row key to retrieve a row from a container SampleC_GetRow
Searching for a row using a TQL TQLSelect.c retrieves a row using a TQL SELECT statement. SampleC_TQLSelect
Executing the TQL aggregate function TQLAggregation.c Executes an aggregation operation using a TQL statement. SampleC_TQLAggregation
Registering a row in multiple containers MultiPut.c registers a bulk of rows in multiple containers SampleC_MultiPut1, SampleC_MultiPut2
Retrieving rows from multiple containers MultiGet.c retrieves a bulk of rows from multiple containers. SampleC_MultiGet1, SampleC_MultiGet2
Executing TQL on multiple containers FetchAll.c executes a bulk of TQLs on multiple containers. SampleC_FetchAll1, SampleC_FetchAll2
Registering/searching binary data BlobData.c registers binary data in a container and retrieves the data from a container SampleC_BlobData
Updating a row UpdateRowByTQL.c updates a row using the RowSet retrieved by TQL SampleC_UpdateRowByTQL
Deleting a row (row key) RemoveRowByRowkey.c specifies a row key to delete a row SampleC_RemoveRowByRowkey
Deleting a row (TQL) RemoveRowByTQL.c deletes the row retrieved using TQL SampleC_RemoveRowByTQL
Creating an index CreateIndex.c creates an index SampleC_Index
Performing time-series operations TQLTimeseries.c performs various operations for time-series data SampleC_TQLTimeseries
Handling array type data ArrayData.c registers/searches array type data SampleC_ArrayData
Handling spatial type data GeometryData.c registers/searches spatial type data SampleC_GeometryData
Retrieving a list of container names ContainerNames.c retrieves a list of container names
Retrieving schema information of a container ContainerInformation.c Retrieves schema information of a container SampleC_Info
Using composite row keys to retrieve rows from multiple containers CompositeKeyMultiGet.c Uses composite row keys to retrieve a bulk of rows from multiple containers. SampleC_CompositeKeyMultiGet1, SampleC_CompositeKeyMultiGet2

Basic programming

This section explains basic programming using the C API.

Connecting to a cluster

Connect to a cluster for data registration/search and other operations In connection operation, use the following methods:

category method
GridStoreFactory instance retrieval gsGetDefaultFactory()
GridStore instance retrieval gsGetGridStore(GSGridStoreFactory *factory, const GSPropertyEntry *properties, size_t propertyCount, GSGridStore **store)
Resource releasing gsCloseGridStore(GSGridStore **store, GSBool allRelated)

Below is a sample program for connecting to a cluster:

#include "gridstore.h"
#include <stdlib.h>
#include <stdio.h>

void main(int argc, char *argv[]){

    GSGridStore *store;
    GSContainer *container;
    GSResult ret;
    size_t stackSize;
    GSResult errorCode;
    GSChar errMsgBuf1[1024], errMsgBuf2[1024];
    int i;

    // (1)
    const GSPropertyEntry props[] = {
        { "notificationAddress", "239.0.0.1" },
        { "notificationPort", "31999" },
        { "clusterName", "myCluster" },
        { "database", "public" },
        { "user", "admin" },
        { "password", "admin" },
        { "applicationName", "SampleC" }
    };

    const size_t propCount = sizeof(props) / sizeof(*props);


    // (2)
    ret = gsGetGridStore(gsGetDefaultFactory(), props, propCount, &store);
    if ( !GS_SUCCEEDED(ret) ){
        fprintf(stderr, "gsGetGridStore error\n");
        goto LABEL_ERROR;
    }

    // (3)
    ret = gsGetContainerGeneral(store, "containerName", &container);
    if ( !GS_SUCCEEDED(ret) ){
        fprintf(stderr, "gsGetContainerGeneral error\n");
        goto LABEL_ERROR;
    }
    gsCloseContainer(&container, GS_TRUE);
    printf("Connect to Cluster\n");


    // (4)
    gsCloseGridStore(&store, GS_TRUE);

    printf("success!\n");

    return;


LABEL_ERROR:
    stackSize = gsGetErrorStackSize(store);
    for ( i = 0; i < stackSize; i++ ){
        errorCode = gsGetErrorCode(store, i);
        gsFormatErrorMessage(store, i, errMsgBuf1, sizeof(errMsgBuf1));
        gsFormatErrorLocation(store, i, errMsgBuf2, sizeof(errMsgBuf2));
        fprintf(stderr, "[%d] %s (%s)\n", errorCode, errMsgBuf1, errMsgBuf2);
    }

    gsCloseGridStore(&store, GS_TRUE);
    return;
}

The following explains the connection operation in the program above.

(1) Set connection information including user and password to GSPropertyEntry. GSPropertyEntry is an array of combinations of property keys and values. Calculate the number of specified properties using sizeof. This number will be needed to retrieve an instance in the next step (2).

(2) Retrieve a GridStore instance based on the properties in connection information.

(3) Once a container is created/retrieved using the GridStore object, a connection to the GridDB cluster will be enabled.

(4) Disconnect and release the resources. In the second argument, specify whether to release all the resources that have been retrieved using a GSGridStore instance. If GS_TRUE is specified, all resources will be released. If GS_FALSE is specified, each resource must be released individually elsewhere.

For more about error handling, see the section Error handling.

Connection methods

Three methods are available to connect to a cluster: multicast method, fixed list method, and provider method.

Connection methods description
multicast method method using multicast communication
fixed list method method where the addresses of all the nodes constituting the cluster are specified directly.
provider method method where the addresses of all the nodes constituting the cluster are provided by the provider.

In connecting to a cluster from an application, make sure to set the settings on the application side according to the connection method defined in the cluster definition file gs_cluster.json.

First, check which connection method is being used by referring to the cluster definition file gs_cluster.json. Then, enter the corresponding values in the Properties object according to the connection method.

Connection methods Property keys to specify in the application description values to be specified
multicast method notificationAddress

notificationPort
multicast address

multicast port number
/values of /transaction/notificationAddress

values of /transaction/notificationPort
fixed list method notificationMember a list of addresses and port numbers of nodes constituting the cluster list format values of /transaction/address and /transaction/port in /cluster/notificationMember
provider method notificationProvider provider’s URL values of /cluster/notificationProvider/url

[Memo] Connection pooling is enabled by default. The maximum number of connections can be specified in the property maxConnectionPoolSize in GridStoreFactory. The default value is 16. For details, see the “GridDB C API Reference”.

Below are the descriptions of the cluster definition file gs_cluster.json and examples of the corresponding connection programs for each of the three connection methods.

example for the multicast method

example for the fixed list method

example for the provider method

Properties

Main properties other than connection methods include the following: For details on the rest of the properties and their descriptions, see the section “gsGetGridStore” in GridDB C API Reference.

item property key required values to be specified
cluster name clusterName required values specified in /cluster/clusterName in gs_cluster.json
database name database optional if connecting to a public database
If not, required.
name of the database to connect to
user name user required name of a user who is connecting (both administrative and general users are allowed)
password password required password of a user who is connecting
application name applicationName optional name to be used to distinguish an application
(shown when checking connection information and events being run using the gs_sh operation tool)
time zone timeZone optional Specify in hours and minutes using the pattern ±hh:mm or ±hhmm
time zone ID: supports only “Z.”
carry-over of a higher environment (JavaVM): auto
When omitted, equivalent to “Z”
authentication method authentication optional Specify either INTERNAL (internal authentication) or LDAP (LDAP authentication) as an authentication method to be used.
* If omitted, the authentication method is automatically selected.
SSL communication sslMode optional For SSL communication,
specify PREFERRED (follows the cluster settings),
VERIFY (SSL is valid, and server certificate validation is performed),
or DISABLED (SSL is invalid)
* If omitted, PREFERRED.
address of the interface to receive the multicast packets from notificationInterfaceAddress optional To configure the cluster network in multicast mode when multiple network interfaces are available, specify the IP address of the interface to receive the multicast packets from.

[Notes] | failover timeout | failoverTimeout | optional | The number of seconds required for a client failover to start.
* When omitted, the value set for GridStoreFactory is used. | | transaction timeout | transactionTimeout | optional | the transaction timeouts (in seconds).
* When omitted, the value 300 (seconds) is used. |

[Notes]

Creating a container

This section shows how to create a container. Containers come in two types: collections and time-series containers. To create a container, specify schemas, including column names and data types. The following two methods are available to specify a schema:

The following explains these two methods in turn.

How to specify a schema using a method

A schema for a container is dynamically specified using the following methods: For this purpose, use a container information class “GSContainerInfo” and a column information class “GSColumnInfo,” both of which represent a schema. The following are the methods for creating containers using these setters/getters.

category method
Creating a collection gsPutCollectionGeneral(GSGridStore *store, const GSChar *name, const GSContainerInfo *info, GSBool modifiable, GSCollection **collection)
Creating a time-series container gsPutTimeSeriesGeneral (GSGridStore *store, const GSChar *name, const GSContainerInfo *info, GSBool modifiable, GSTimeSeries **timeSeries)
Creating a container (collection, or time-series container) gsPutContainerGeneral(GSGridStore *store, const GSChar *name, const GSContainerInfo *info, GSBool modifiable, GSContainer **container)

gsPutContainerGeneral, which is a method for container creation, can create both types of container: collections and time-series containers.

Creating a collection with gsPutCollectionGeneral

Below is the entire program to create a collection using gsPutCollectionGeneral for creating a collection.

#include "gridstore.h"
#include <stdlib.h>
#include <stdio.h>

void main(int argc, char *argv[]){

    GSGridStore *store;
    GSContainer *container;
    GSCollection *collection;
    GSContainerInfo info = GS_CONTAINER_INFO_INITIALIZER;
    GSColumnInfo columnInfo = GS_COLUMN_INFO_INITIALIZER;
    GSColumnInfo columnInfoList[3];
    GSResult ret;
    size_t stackSize;
    GSResult errorCode;
    GSChar errMsgBuf1[1024], errMsgBuf2[1024];
    int i;

    const GSPropertyEntry props[] = {
        { "notificationAddress", "239.0.0.1" },
        { "notificationPort", "31999" },
        { "clusterName", "myCluster" },
        { "database", "public" },
        { "user", "admin" },
        { "password", "admin" },
        { "applicationName", "SampleC" }
    };

    const size_t propCount = sizeof(props) / sizeof(*props);


    ret = gsGetGridStore(gsGetDefaultFactory(), props, propCount, &store);
    if ( !GS_SUCCEEDED(ret) ){
        fprintf(stderr, "ERROR gsGetGridStore\n");
        goto LABEL_ERROR;
    }
    ret = gsGetContainerGeneral(store, "containerName", &container);
    if ( !GS_SUCCEEDED(ret) ){
        fprintf(stderr, "ERROR gsGetContainerGeneral\n");
        goto LABEL_ERROR;
    }
    gsCloseContainer(&container, GS_TRUE);
    printf("Connect to Cluster\n");


    // (1)
    info.type = GS_CONTAINER_COLLECTION;

    // (2)
    info.rowKeyAssigned = GS_TRUE;

    // (3)
    columnInfo.name = "id";
    columnInfo.type = GS_TYPE_INTEGER;
    columnInfoList[0] = columnInfo;

    columnInfo.name = "productName";
    columnInfo.type = GS_TYPE_STRING;
    columnInfoList[1] = columnInfo;

    columnInfo.name = "count";
    columnInfo.type = GS_TYPE_INTEGER;
    columnInfoList[2] = columnInfo;

    // (4)
    info.columnCount = sizeof(columnInfoList) / sizeof(*columnInfoList);
    info.columnInfoList = columnInfoList;

    // (5)
    ret = gsPutCollectionGeneral(store, "SampleC_collection1", &info, GS_FALSE, &collection);
    if ( !GS_SUCCEEDED(ret) ){
        fprintf(stderr, "ERROR gsPutCollectionGeneral\n");
        goto LABEL_ERROR;
    }

    printf("Create Collection name=SampleC_collection1\n");

    gsCloseGridStore(&store, GS_TRUE);

    printf("success!\n");

    return;


LABEL_ERROR:
    stackSize = gsGetErrorStackSize(store);
    for ( i = 0; i < stackSize; i++ ){
        errorCode = gsGetErrorCode(store, i);
        gsFormatErrorMessage(store, i, errMsgBuf1, sizeof(errMsgBuf1));
        gsFormatErrorLocation(store, i, errMsgBuf2, sizeof(errMsgBuf2));
        fprintf(stderr, "[%d] %s (%s)\n", errorCode, errMsgBuf1, errMsgBuf2);
    }

    gsCloseGridStore(&store, GS_TRUE);
    return;

}

The following explains the part of the program where a collection is created; refer to the comments in the program. (2) Sets column names and data types to column information “GSColumnInfo.” If there are multiple columns, multiple GSColumnIinfo objects are created. (2) Sets GSColumnInfo to container information “GSContainterInfo”. (5) With this data, creates a collection using putCollection.

[Notes]

Creating a time-series container with gsPutTimeSeriesGeneral

This section shows how to create a time-series container using gsPutTimeseries for creating a time-series container. The overall flow of the program is the same as the program for creating a collection; only the differences are shown below.

// (1)
info.type = GS_CONTAINER_TIME_SERIES;

// (2)
info.rowKeyAssigned = GS_TRUE;

// (3)
columnInfo.name = "date";
columnInfo.type = GS_TYPE_TIMESTAMP;
columnInfoList[0] = columnInfo;

columnInfo.name = "value";
columnInfo.type = GS_TYPE_DOUBLE;
columnInfoList[1] = columnInfo;

// (4)
info.columnCount = sizeof(columnInfoList) / sizeof(*columnInfoList);
info.columnInfoList = columnInfoList;

// (5)
ret = gsPutTimeSeriesGeneral(store, "SampleC_timeseries1", &info, GS_FALSE, &timeseries);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsPutTimeSeriesGeneral\n");
  goto LABEL_ERROR;
}

printf("Create TimeSeries name=SampleC_timeseries1\n");

[Notes]

Creating a container with gsPutContainerGeneral

gsPutContainerGeneral, which is a method for container creation, can create both types of container: collections and time-series containers. Use GSContainerInfo.type to specify the types of a collection and a time-series container.

How to specify a schema using a struct

This section shows how to define a container schema using a C struct. Member variables are mapped to the columns in a GridDB container. Use the following methods to specify a schema using a struct.

category method
Creating a collection gsPutCollection(GSGridStore *store, const GSChar *name, const GSBinding *binding, const GSCollectionProperties *properties, GSBool modifiable, GSCollection **collection)
Creating a time-series container gsPutTimeSeries(GSGridStore *store, const GSChar *name, const GSBinding *binding, const GSTimeSeriesProperties *properties, GSBool modifiable, GSTimeSeries **timeSeries)
Creating a container (collection, or time-series container) gsPutContainer(GSGridStore *store, const GSChar *name, const GSBinding *binding, const GSContainerInfo *info, GSBool modifiable, GSContainer **container)

gsPutContainer, which is a method for container creation, can create both types of container: collections and time-series containers.

Below is a program for creating a collection with a row key, using gsPutCollection for creating a collection.

gsPutTimeSeries for creating time-series containers and gsPutContainer for creating containers follow the same program flow.

// (1)
typedef struct {
    int id;
    const GSChar *productName;
    uint64_t count;
} Product;

// (2)
GS_STRUCT_BINDING(Product,
    GS_STRUCT_BINDING_KEY(id, GS_TYPE_INTEGER)
    GS_STRUCT_BINDING_ELEMENT(productName, GS_TYPE_STRING)
    GS_STRUCT_BINDING_ELEMENT(count, GS_TYPE_INTEGER)
);

void main(int argc, char *argv[]){
    // :

  ret = gsPutCollection(store, "SampleC_collection2", GS_GET_STRUCT_BINDING(Product), NULL, GS_FALSE, &collection);
    if ( !GS_SUCCEEDED(ret) ){
        fprintf(stderr, "ERROR gsPutCollection\n");
        goto LABEL_ERROR;
    }

    fprintf(stdout, "Create Collection name=SampleC_collection2\n");

(1) defines a collection using a C struct.

(2) defines the mapping between a struct and a collection schema, using GS_STRUCT_BINDING.

category macro
Retrieving the mapping between a struct and a schema. GS_GET_STRUCT_BINDING(type)
Defining the mapping between a struct and a schema. GS_STRUCT_BINDING(type, entries)
Defining the mapping between a struct member and a row key. GS_STRUCT_BINDING_KEY(member, memberType)
Defining the mapping between a struct member and a column (basic type). GS_STRUCT_BINDING_ELEMENT(member, memberType)
Defining the mapping between a struct member and a column (array type). GS_STRUCT_BINDING_ARRAY(member, sizeMember, elementType)
Defining the mapping between a struct member and a row key (by specifying a column name). GS_STRUCT_BINDING_NAMED_KEY(name, member, memberType)
Defining the mapping between a struct member and a column (basic type) by specifying a column name. GS_STRUCT_BINDING_NAMED_ELEMENT(name, member, memberType)
Defining the mapping between a struct member and a column (array type) by specifying a column name. GS_STRUCT_BINDING_NAMED_ARRAY(name, member, sizeMember, elementType)

ex.)

typedef struct {
    int id;
    const int8_t *lob;
    size_t lobSize;
} Product;

GS_STRUCT_BINDING(Product,
    GS_STRUCT_BINDING_KEY(id, GS_TYPE_INTEGER)
        GS_STRUCT_BINDING_ARRAY(lob, lobSize, GS_TYPE_BYTE)
);

[Notes]

Retrieving a container

This section shows how to retrieve a container by specifying its name. Retrieve a container first in order to register data and manipulate rows, such as TQL.

The following methods are available for container retrieval. These methods are categorized into the following two depending on the differences in the type of rows (GS Row and user-defined structs) used in row manipulation.

GSRow

user-defined structs

ex.) container retrieval (manipulating rows with GSRow)

Row * row;

// (1)
gsGetCollectionGeneral(store, "collection1", &collection);

// (2)
gsCreateRowByContainer(collection, &row);

// (3)
gsGetRowByInteger(container, 0, row, GS_FALSE, NULL);

// (4)
gsGetRowFieldAsInteger(row, 0, &id);
gsGetRowFieldAsString(row, 1, &productName);

ex.) container retrieval (manipulating rows using a user-defined class)

typedef struct {
    int id;
    const GSChar *productName;
    uint64_t count;
} Product;
GS_STRUCT_BINDING(Product,
    GS_STRUCT_BINDING_KEY(id, GS_TYPE_INTEGER)
    GS_STRUCT_BINDING_ELEMENT(productName, GS_TYPE_STRING)
    GS_STRUCT_BINDING_ELEMENT(count, GS_TYPE_INTEGER)
);

void main(int argc, char *argv[]){
    Product product;
    // :

    // (1)
    gsGetCollection(store, "collection1", GS_GET_STRUCT_BINDING(Product), &collection);

    // (2)
    gsGetRowByInteger(collection, 0, &product, GS_FALSE, NULL);

    // (3)
    int id = product.id;

    // :

Registering data

To register a row in a container, use the following methods:

category method
Creating a row object (with a container specified) gsCreateRowByContainer(GSContainer *container, GSRow **row)
Creating a row object (with container information specified) gsCreateRowByStore(GSGridStore *store, const GSContainerInfo *info, GSRow **row)
storing a value in a row object gsSetRowFieldByXXXXX (where XXXXX indicates a data type)
row registration gsPutRow(GSContainer *container, const void *key, const void *rowObj, GSBool *exists)

Below is a program for registering one row in a container.

// (1)
ret = gsGetContainerGeneral(store, "SampleC_PutRow", &container);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetContainerGeneral\n");
  goto LABEL_ERROR;
}
if ( container == NULL ){
  fprintf(stderr, "ERROR Container not found. name=SampleC_PutRow\n");
  goto LABEL_ERROR;
}

// (2)
ret = gsCreateRowByContainer(container, &row);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsCreateRowByContainer\n");
  goto LABEL_ERROR;
}

// (3)
gsSetRowFieldByInteger(row, 0, 0);
gsSetRowFieldByString(row, 1, "display");
gsSetRowFieldByInteger(row, 2, 150);

// (4)
ret = gsPutRow(container, NULL, row, NULL);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsPutRow\n");
  goto LABEL_ERROR;
}

The following explains how to register rows, referring to the program above. (1) Retrieves a container for registering rows. (2) Creates an empty row object from a container object. (3) Sets data to be registered in this empty row object. (4) Registers the rows in the container in step (1).

For more about mappings between GridDB data types and C data types, see the section data type mappings.

[Notes]

Registering multiple rows in one container

Multiple rows can be registered all at once. For this purpose, use the following method:

category method
row registration gsPutMultipleRows(GSContainer *container, const void *const *rowObjs, size_t rowCount, GSBool *exists)

Below is a program registering multiple rows in one container, using gsPut MultipleRows.

GSRow *row;
const void * const * rowObj;
GSRow * rowList[5];
// :

// (1)
ret = gsGetContainerGeneral(store, "SampleC_PutRows", &container);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetContainerGeneral\n");
  goto LABEL_ERROR;
}
if ( container == NULL ){
  fprintf(stderr, "ERROR Container not found. name=SampleC_PutRows\n");
  goto LABEL_ERROR;
}

// (2)
for ( i = 0; i < 5; i++ ){
  gsCreateRowByContainer(container, &row);

  gsSetRowFieldByInteger(row, 0, i);
  gsSetRowFieldByString(row, 1, "dvd");
  gsSetRowFieldByInteger(row, 2, 10*i);

  rowList[i] = row;
}
  rowObj = (void *)rowList;

// (3)
ret = gsPutMultipleRows(container, rowObj, 5, NULL);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsPutMultipleRows\n");
  goto LABEL_ERROR;
}

In this program, multiple row objects are created to execute gsPutMultipleRows.

[Notes]

Retrieving data

Retrieving data means retrieving rows from a container.

In cases of containers with their row keys already set, rows can be retrieved by specifying row key values. If, on the other hand, row keys are not set, retrieve a row using TQL, as will be described later.

category method
row retrieval gsGetRow(GSContainer *container, const void *key, void *rowObj, GSBool *exists)
row retrieval gsSetRowFieldByXXXXX (where XXXXX indicates the data type of a row key)
Retrieving column values from a row object gsSetRowFieldByXXXXX (where XXXXX indicates the data type of a column)

Below is a program for retrieving a row with a row key value “0” from a collection with a row key.

// (1)
ret = gsGetContainerGeneral(store, containerName, &container);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetContainerGeneral\n");
  goto LABEL_ERROR;
}
if ( container == NULL ){
  fprintf(stderr, "ERROR Container not found. name=%s\n", containerName);
  goto LABEL_ERROR;
}

// (2)
gsCreateRowByContainer(container, &row);

// (3)
ret = gsGetRowByInteger(container, 0, row, GS_FALSE, NULL);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetRowByInteger\n");
  goto LABEL_ERROR;
}

// (4)
gsGetRowFieldAsInteger(row, 0, &id);
gsGetRowFieldAsString(row, 1, &productName);
gsGetRowFieldAsInteger(row, 2, &count);

printf("Get Row (id=%d, productName=%s, count=%d)\n", id, productName, count);

The following explains the operation to retrieve rows in the program above. (2) Creates an empty row object. (3) Specifies a row key by performing a get operation on a container and retrieves the row. (4) Fetches the value of the retrieved row using the get method so as to match the data type of a column.

Executing a TQL

This section shows how to execute a TQL.

In TQL execution, the class of run results and their processing method vary according to the type of SELECT selection formulas.

types of SELECT selection formulas description class type of execution results
row (*) retrieves rows stored in a container.
ex.) SELECT * FROM container1
row object type of a container
(type of R in Container<K,R>)
aggregation operations (including MAX, MIN, and COUNT) retrieves the result of an aggregation operation.
ex.) SELECT COUNT(*) FROM container1
AggregationResult type

[Notes]

Searching for a row

To execute a TQL for searching for row values, use the methods below:

category method
query creation gsQuery(GSContainer *container, const GSChar *queryString, GSQuery **query)
query execution gsFetch(GSQuery *query, GSBool forUpdate, GSRowSet **rowSet)
whether rows exist in the result set gsHasNextRow (GSRowSet *rowSet)
Retrieving row objects from result sets gsGetNextRow(GSRowSet *rowSet, void *rowObj)

The following is a TQL program for searching a collection for rows whose column count exceeds 50 and returning the search result sorted by ascending order of id.

// (1)
ret = gsGetContainerGeneral(store, containerName, &container);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetContainerGeneral\n");
  goto LABEL_ERROR;
}
if ( container == NULL ){
  fprintf(stderr, "ERROR Container not found. name=%s\n", containerName);
  goto LABEL_ERROR;
}

// (2)
const GSChar * queryStr = "SELECT * WHERE count >= 50 ORDER BY id";
printf("TQL query : %s\n", queryStr);
ret = gsQuery(container, queryStr, &query);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsQuery\n");
  goto LABEL_ERROR;
}
ret = gsFetch(query, GS_FALSE, &rs);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsFetch\n");
  goto LABEL_ERROR;
}

// (3)
gsCreateRowByContainer(container, &row);

// (4)
while (gsHasNextRow(rs)) {
  int id;
  const GSChar *productName;
  int count;


  // (5)
  ret = gsGetNextRow(rs, row);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetNextRow\n");
    goto LABEL_ERROR;
  }

  gsGetRowFieldAsInteger(row, 0, &id);
  gsGetRowFieldAsString(row, 1, &productName);
  gsGetRowFieldAsInteger(row, 2, &count);

  printf("TQL result: id=%d, productName=%s, count=%d\n", id, productName, count);
}

The following explains the search operation in the program above. (2) Creates a query object using a TQL to be executed and performs search using the fetch command. (3) Creates an empty row object to retrieve results. (4) Retrieves search results; retrieves row values using the get method so as to match the data type of a column in a container.

Performing an aggregation operation

To execute a TQL for an aggregation operation, use the following methods:

category method
query creation gsQuery(GSContainer *container, const GSChar *queryString, GSQuery **query)
query execution gsFetch(GSQuery *query, GSBool forUpdate, GSRowSet **rowSet)
whether rows exist in the result set gsHasNextRow (GSRowSet *rowSet)
Retrieving GSAggregationResult from result sets gsGetNextAggregation (GSRowSet *rowSet, GSAggregationResult **aggregationResult)
retrieving values from GSAggregationResult gsGetAggregationValueAsXXXXX (where XXXXX indicates a data type)

The following is a program for retrieving the maximum column count from a collection.

// (1)
ret = gsQuery(container, "SELECT MAX(count)", &query);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsQuery\n");
    goto LABEL_ERROR;
}
ret = gsFetch(query, GS_FALSE, &rs);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsFetch\n");
    goto LABEL_ERROR;
}

// (2)
while (gsHasNextRow(rs)) {
    int64_t max;

    // (3)
  ret = gsGetNextAggregation(rs, &aggregationResult);
    if ( !GS_SUCCEEDED(ret) ){
        fprintf(stderr, "ERROR gsGetNextRow\n");
        goto LABEL_ERROR;
    }

    // (4)
  gsGetAggregationValueAsLong(aggregationResult, &max, NULL);

  printf("TQL result: max=%d\n", max);
}

(3) When fetching values from GSRowSet, uses gsGetNextAggregation for aggregation operation. (4) The data type of values of the object GSAggregationResult varies according to the type of aggregation operations performed; retrieves values so as to match the data type.

For more about a list of aggregation operations in a TQL, refer to the section “Performing an aggregation operation.”

[Notes]

Performing a bulk of operations on multiple containers

Data registration and search operations allow multiple operations to be performed at once. The following are the methods for multiple containers.

category method
Registering a row in multiple containers gsPutMultipleContainerRows(GSGridStore *store, const GSContainerRowEntry *entryList, size_t entryCount)
Retrieving rows from multiple containers gsGetMultipleContainerRows(GSGridStore *store, const GSRowKeyPredicateEntry *const *predicateList, size_t predicateCount, const GSContainerRowEntry **entryList, size_t *entryCount)
Executing a TQL on multiple containers gsFetchAll(GSGridStore *store, GSQuery *const *queryList, size_t queryCount)

Operations on one container and operations on multiple containers differ in methods, retrieval criteria, and other properties; use the one that best suits your purpose. The table below shows the differences among them.

For explanations on each method, refer to the links in this document.

category container to be processed method retrieval criteria links in this document
row registration one gsPutRow
gsPutMultipleRows
- Registering data
  more than one gsPutMultipleContainerRows - Registering a row in multiple containers
row retrieval
(by specifying a row key)
one gsGetRow row key specified Retrieving data
  more than one gsGetMultipleContainerRows Row key or row key range, as specified by the GSRowKeyPredicateEntry class Retrieving rows from multiple containers
Row retrieval
(TQL execution)
one gsQuery
gsFetch
TQL queries Executing a TQL
  more than one gsFetchAll TQL queries Executing a TQL on multiple containers

Registering a row in multiple containers

Multiple rows are registered in multiple containers. For this, you can register rows using multiPut by creating pairs of container names and a list of rows to be registered.

category method
Registering a row in multiple containers gsPutMultipleContainerRows(GSGridStore *store, const GSContainerRowEntry *entryList, size_t entryCount)

Below is a program for registering two rows in each of the two collections.

const GSChar *const containerNameList[2] = { "SampleC_MultiPut1", "SampleC_MultiPut2" };
const size_t containerCount = 2;

const size_t rowCount = 5;
const GSChar * nameList[5] = { "notebook PC", "desktop PC", "keyboard", "mouse", "printer" };
const int numberList[2][5] = { { 108, 72, 25, 45, 62 }, { 50, 11, 208, 23, 153 } };

// :

for ( i = 0; i < containerCount; i++ ){
  // (1)
  ret = gsGetContainerGeneral(store, containerNameList[i], &container);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetContainerGeneral\n");
    return;
  }
  if ( container == NULL ){
    fprintf(stderr, "ERROR Container not found. name=%s\n", containerNameList[i]);
    goto LABEL_ERROR;
  }

  // (2)
  for ( j = 0; j < rowCount; j++ ){
    gsCreateRowByContainer(container, &row);

    gsSetRowFieldByInteger(row, 0, j);
    gsSetRowFieldByString(row, 1, nameList[j]);
    gsSetRowFieldByInteger(row, 2, numberList[i][j]);
    allRowList[i][j] = row;
  }

  // (3)
  inEntry.containerName = containerNameList[i];
  inEntry.rowList = allRowList[i];
  inEntry.rowCount = rowCount;
  inEntryList[i] = inEntry;
}

// (4)
ret = gsPutMultipleContainerRows(store, inEntryList, containerCount);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsPutMultipleContainerRows\n");
  return;
}

Just like when registering a row in one container, create an empty row from a container object to create rows to be registered. Set container information and rows to GSContainerRowEntry and register those rows together using gsPutMultipleContainerRows.

[Notes]

Retrieving rows from multiple containers

The following explains how to retrieve rows that meet the specified criteria from multiple containers.

category method
Retrieving rows from multiple containers gsGetMultipleContainerRows(GSGridStore *store, const GSRowKeyPredicateEntry *const *predicateList, size_t predicateCount, const GSContainerRowEntry **entryList, size_t *entryCount)

Criteria on row keys can be specified per container. There are two types of criteria: individual criteria, which specify specific values, and range criteria, which specify the value range. Specify these criteria using GSRowKeyPredicate.

category method
Creating criteria gsCreateRowKeyPredicate(GSGridStore *store, GSType keyType, GSRowKeyPredicate **predicate)
Setting individual criteria on row keys gsAddPredicateKeyXXXXX (where XXXXX indicates a data type)
Setting range criteria on row keys gsSetPredicateStartKeyXXXXX
gsSetPredicateFinishKeyXXXXX
(where XXXXX indicates a data type)

[Notes]

Below is a program for retrieving a bulk of rows from collections by setting individual criteria.

const GSChar *const containerNameList[2] = { "SampleC_MultiGet1", "SampleC_MultiGet2" };
const size_t containerCount = 2;

GSRowKeyPredicate *predicate;
GSRowKeyPredicateEntry predEntryValueList[2];
const GSRowKeyPredicateEntry *predEntryList[2];

const GSContainerRowEntry *outEntryList;
size_t outEntryCount;
GSContainerRowEntry outEntry = GS_CONTAINER_ROW_ENTRY_INITIALIZER;
int id;
GSChar const *productName;
int count;

// :

// (1)
for (i = 0; i < containerCount; i++) {
  gsCreateRowKeyPredicate(store, GS_TYPE_INTEGER, &predicate);

  gsAddPredicateKeyByInteger(predicate, 0);
  gsAddPredicateKeyByInteger(predicate, 2);

  predEntryValueList[i].containerName = containerNameList[i];
  predEntryValueList[i].predicate = predicate;

  predEntryList[i] = &predEntryValueList[i];
}

// (2)
ret = gsGetMultipleContainerRows(store, predEntryList, containerCount, &outEntryList, &outEntryCount);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetMultipleContainerRows\n");
  goto LABEL_ERROR;
}

// (3)
for (i = 0; i < outEntryCount; i++) {
  outEntry = outEntryList[i];

  for (j = 0; j < outEntry.rowCount; j++) {
    row = (GSRow *)outEntry.rowList[j];

    gsGetRowFieldAsInteger(row, 0, &id);
    gsGetRowFieldAsString(row, 1, &productName);
    gsGetRowFieldAsInteger(row, 2, &count);

    printf("MultiGet: container=%s, id=%d, productName=%s, count=%d\n", outEntry.containerName, id, productName, count);
  }
}

(1) Using GSRowKeyPredicate, creates conditions on rows to be retrieved and stores pairs of container names and GSRowKeyPredicate in GSRowKeyPredicateEntry. (2) Uses gsGetMultipleContainerRows to perform search. (3) The results are returned as a combination of container names and row lists.

Executing a TQL on multiple containers

TQL is executed on multiple containers. TQL can be specified per container.

category method
Executing a TQL on multiple containers gsFetchAll(GSGridStore *store, GSQuery *const *queryList, size_t queryCount)

The following is a program for executing two TQLs together, each corresponding to a collection, to retrieve rows.

const GSChar *const containerNameList[2] = { "SampleC_FetchAll1", "SampleC_FetchAll2" };
const size_t containerCount = 2;

const GSChar *const tqlList[2] = { "select * where count > 60",
                  "select * where count > 100" };

GSContainer * containerList[2];
GSQuery *queryList[2];
GSRowSet *rs;
int id;
GSChar const *productName;
int count;

// :

// (1)
for ( i = 0; i < containerCount; i++ ){
  ret = gsGetContainerGeneral(store, containerNameList[i], &containerList[i]);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetContainerGeneral\n");
    goto LABEL_ERROR;
  }
  if ( containerList[i] == NULL ){
    fprintf(stderr, "ERROR Container not found. name=%s\n", containerNameList[i]);
    goto LABEL_ERROR;
  }

  printf("FetchAll query : container=%s, tql=%s\n", containerNameList[i], tqlList[i]);
  ret = gsQuery(containerList[i], tqlList[i], &queryList[i]);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsQuery\n");
    goto LABEL_ERROR;
  }
}


// (2)
ret = gsFetchAll(store, queryList, containerCount);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsFetchAll\n");
  goto LABEL_ERROR;
}

// (3)
for (i = 0; i < containerCount; i++) {
  gsCreateRowByContainer(containerList[i], &row);

  ret = gsGetRowSet(queryList[i], &rs);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetRowSet\n");
    goto LABEL_ERROR;
  }

  while (gsHasNextRow(rs)) {
    ret = gsGetNextRow(rs, row);
    if ( !GS_SUCCEEDED(ret) ){
      fprintf(stderr, "ERROR gsGetNextRow\n");
      goto LABEL_ERROR;
    }

    gsGetRowFieldAsInteger(row, 0, &id);
    gsGetRowFieldAsString(row, 1, &productName);
    gsGetRowFieldAsInteger(row, 2, &count);

    printf("FetchAll result: container=%s, row=(%d, \"%s\", %d)\n", containerNameList[i], id, productName, count);
  }

  gsCloseRow(&row);
  gsCloseRowSet(&rs);
  gsCloseQuery(&queryList[i]);
}

(1) TQL queries are created from container objects and stored in a list. (3) Executes gsfetchAll to execute all TQLs together. (3) Search results are stored in the query list specified in (2).

Handling binary data

This section shows how to register and retrieve binary data. The data type for binary data is Blob type. You can manipulate binary data like other data types.

Registering binary data

The program below loads binary data from a file and registers rows.

// (1)
file = fopen("BlobData.c", "rb");
// :

// (2)
ret = gsCreateRowByContainer(collection, &row);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsCreateRowByContainer\n");
    goto LABEL_ERROR;
}

// (3)
gsSetRowFieldByInteger(row, 0, 0);

blob.size = size;
blob.data = data;
ret = gsSetRowFieldByBlob(row, 1, &blob);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsSetRowFieldByBlob\n");
    goto LABEL_ERROR;
}

// (4)
ret = gsPutRow(collection, NULL, row, NULL);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsPutRow\n");
    goto LABEL_ERROR;
}

(1) Loads binary data from a file. “(2) (3) Set binary data in a row object.

Retrieving binary data

Use getBlob to retrieve binary data.

// (1)
gsCreateRowByContainer(collection, &row);

// (2)
ret = gsGetRowByInteger(collection, 0, row, GS_FALSE, NULL);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetRowByInteger\n");
    goto LABEL_ERROR;
}

// (3)
GSBlob blob;
gsGetRowFieldAsBlob(row, 1, &blob);

Updating data

Updating data means updating rows. There are two ways to update rows. One is to update them by specifying row keys, and the other is to update them using the execution results of a TQL.

category method
Updating rows by specifying row keys gsPutRow(GSContainer *container, const void *key, const void *rowObj, GSBool *exists)
gsPutMultipleRows(GSContainer *container, const void *const *rowObjs, size_t rowCount, GSBool *exists)
Updating rows based on TQL run results gsUpdateCurrentRow (GSRowSet *rowSet, const void *rowObj)

In the first method, where rows are updated by specifying the corresponding row keys, data are only updated if data already exist that contain the same row key as the row specified by the put operation. If there exist no row key data, or if row keys are not set in the collection, executing the command put will always register new rows.

Below is a program for updating rows based on TQL run results.

// (1)
ret = gsGetContainerGeneral(store, containerName, &container);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetContainerGeneral\n");
  goto LABEL_ERROR;
}
if ( container == NULL ){
  fprintf(stderr, "ERROR Container not found. name=%s\n", containerName);
  goto LABEL_ERROR;
}

// (2)
gsSetAutoCommit(container, GS_FALSE);

// (3)
ret = gsQuery(container, "SELECT * WHERE id = 4", &query);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsQuery\n");
  goto LABEL_ERROR;
}
ret = gsFetch(query, GS_TRUE, &rs);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsFetch\n");
  goto LABEL_ERROR;
}

// (4)
while (gsHasNextRow(rs)) {
  int id;
  const GSChar *productName;
  int count;

  gsCreateRowByContainer(container, &row);

  ret = gsGetNextRow(rs, row);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetNextRow\n");
    goto LABEL_ERROR;
  }

  gsSetRowFieldByInteger(row, 2, 325);

  ret = gsUpdateCurrentRow(rs, row);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsUpdateCurrentRow\n");
    goto LABEL_ERROR;
  }
}

// (5)
ret = gsCommit(container);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsCommit\n");
  goto LABEL_ERROR;
}

printf("Update row id=4\n");

[Notes]

Deleting data

Deleting data means deleting rows. There are two ways to delete rows. One is to delete them by specifying row keys, and the other is to delete them from the search results of a TQL.

category method
deleting rows by specifying row keys gsDeleteRow(GSContainer *container, const void *key, GSBool *exists)
gsDeleteRowByXXXXX (where XXXXX indicates the data type of a row key)
deleting rows from TQL search results gsDeleteCurrentRow(GSRowSet *rowSet)

Below is a program for deleting rows whose row key value is “3” using the first method, namely, by specifying row keys to delete rows.

gsDeleteRowByInteger(container, 3, NULL);

Below is a program for deleting rows whose column count is below 50, using the second method, namely, by deleting rows from TQL search results

ret = gsGetContainerGeneral(store, containerName, &container);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetContainerGeneral\n");
  goto LABEL_ERROR;
}
if ( container == NULL ){
  fprintf(stderr, "ERROR Container not found. name=%s\n", containerName);
  goto LABEL_ERROR;
}

// (1)
gsSetAutoCommit(container, GS_FALSE);

// (2)
printf("Delete query : %s\n", "SELECT * WHERE count < 50");
ret = gsQuery(container, "SELECT * WHERE count < 50", &query);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsQuery\n");
  goto LABEL_ERROR;
}
ret = gsFetch(query, GS_TRUE, &rs);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsFetch\n");
  goto LABEL_ERROR;
}

// (3)
while (gsHasNextRow(rs)) {
  gsCreateRowByContainer(container, &row);

  ret = gsGetNextRow(rs, row);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetNextRow\n");
    goto LABEL_ERROR;
  }

  ret = gsDeleteCurrentRow(rs);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsDeleteCurrentRow\n");
    goto LABEL_ERROR;
  }
}

// (4)
ret = gsCommit(container);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsCommit\n");
  goto LABEL_ERROR;
}

printf("Delete Row\n");

[Notes]

Deleting a container

The following shows how to delete containers by specifying their names. The following methods can be used to delete containers:

category method
collection deletion gsDropCollection(GSGridStore *store, const GSChar *name)
time-series container deletion gsDropTimeSeries(GSGridStore *store, const GSChar *name)
container deletion gsDropContainer(GSGridStore *store, const GSChar *name)

[Notes]

Below is a program for deleting the collection “collection1”.

gsDropCollection(store, "collection1");

Creating an index

The following shows how to create an index in a column in a container.

Two types of indexes are available: tree indexes and spatial indexes. The index types that can be specified depend on the container type and the data type of columns. For details on index types, see the section Creating an index in the previous Chapter on JavaAPI.

The following two methods are available for index creation, which differ in how index types and columns are specified:

category method
index creation (specify a column name and number, an index type, and an index name) gsCreateIndexDetail(GSContainer *container, const GSIndexInfo *info)
index creation (specify a column name and an index type) gsCreateIndex(GSContainer *container, const GSChar *columnName, GSIndexTypeFlags flags)

[Notes]

The following is a program fro creating a tree index in the column “count” of a collection using gsCreateIndexDetail for creating an index.

// (1)
GSIndexInfo info;
info.name = "tree_index";
info.type = GS_INDEX_FLAG_TREE;
info.columnName = "count";
info.column = 2;

// (2)
ret = gsCreateIndexDetail(container, &info);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsCreateIndexDetail\n");
    goto LABEL_ERROR;
}

// (3)
compositeInfo.name = "composite_index";
compositeInfo.type = GS_INDEX_FLAG_TREE;
compositeInfo.columnNameList = indexColumnNameList;
compositeInfo.columnNameCount = indexColumnNameCount;

// (4)
ret = gsCreateIndexDetail(container, &compositeInfo);
if (!GS_SUCCEEDED(ret)) {
    fprintf(stderr, "ERROR gsCreateIndexDetail\n");
    goto LABEL_ERROR;
}

(1) To GSIndexInfo (index information), sets index type, index name, and a column to create.
(2) Execute gsCreateIndexDetail with GSIndexInfo as an argument.
(3) In composite indexes, use the array form to specify the column to be created (column number or column name), that is specified in the index information GSIndexInfo.
(4) Execute gsCreateIndexDetail with GSIndexInfo as an argument.

Others

Data type mappings

The following shows mappings between GridDB data types and C data types in the C API. When retrieving and setting values from a row, use the following data types:

GridDB data types C data types Additional notes
BOOL types GSBool The value is GS_TRUE or GS_FALSE.
STRING types GSChar GSChar is of char type
BYTE types int8_t -
SHORT types int16_t -
INTEGER types int32_t -
LONG types int64_t -
FLOAT types float -
DOUBLE types double -
TIMESTAMP types GSTimestamp GSTimestamp is an int64_t type. The value represents UNIX time in milliseconds.
GEOMETRY types GSChar The value represent strings in WKT format.
BLOB types GSBlob GSBlob is a struct that has data size “size” and a pointer to data “data” as members.

Error handling

Many of the C API methods return an execution result code GSResult, which indicates the success/failure of a method, as a return value. The success/failure of a method can be checked using the macro GS_SUCCEEDED as follows:

GSResult ret = gsGetContainerGeneral(store, "containerName", &container);
if ( !GS_SUCCEEDED(ret) ){
    // :
}

If an error occurs, you can obtain error information using the following methods:

category method
Retrieval of the stack size of error information gsGetErrorStackSize(void *gsResource)
Retrieval of error codes gsGetErrorCode(void *gsResource, size_t stackIndex)
Retrieval of error messages gsFormatErrorMessage(void *gsResource, size_t stackIndex, GSChar *strBuf, size_t bufSize)
Retrieval of information on where an internal error occurred gsFormatErrorLocation(void *gsResource, size_t stackIndex, GSChar *strBuf, size_t bufSize)
Determination of the error codes for timeout errors gsIsTimeoutError(GSResult result)

Below is a sample program for displaying error codes and error messages when an error occurs.

size_t stackSize;
size_t s;
GSResult errorCode;
GSChar errMsgBuf1[1024], errMsgBuf2[1024];

stackSize = gsGetErrorStackSize(store);
for ( s = 0; s < stackSize; s++ ){
    errorCode = gsGetErrorCode(store, s);
    gsFormatErrorMessage(store, s, errMsgBuf1, sizeof(errMsgBuf1));
    gsFormatErrorLocation(store, s, errMsgBuf2, sizeof(errMsgBuf2));
    printf("[%d] %s (%s)\n", errorCode, errMsgBuf1, errMsgBuf2);
}

In the argument gsResource, specify the object to operate on when an error occurs, or the parent object that created that object.

For example, if an error occurs while registering rows in a container, information on that error can be retrieved by both the container object and the GSGridStore that was used to retrieve this container object.

Depending on how to handle errors in a program, it is possible to handle errors for each method by specifying objects to be processed; it is also possible to group multiple operations into larger units and handle a large number of errors together by specifying GSGridStore.

ex.) handling errors per method

ret = gsPutRow(container, NULL, row, NULL);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsPutRow\n");

    stackSize = gsGetErrorStackSize(container);
    for ( s = 0; s < stackSize; s++ ){
        errorCode = gsGetErrorCode(container, s);
        gsFormatErrorMessage(container, s, errMsgBuf1, sizeof(errMsgBuf1));
        gsFormatErrorLocation(container, s, errMsgBuf2, sizeof(errMsgBuf2));
        printf("[%d] %s (%s)\n", errorCode, errMsgBuf1, errMsgBuf2);
    }
    return;
}

TIMESTAMP type utility function

TIMESTAMP type errors are treated as GSTimestamp type in the C API. The following methods are available as utility functions for the GSTIMESTAMP type.

category method
Retrieving the current time gsCurrentTime()
Adding time gsAddTime(GSTimestamp timestamp, int32_t amount, GSTimeUnit timeUnit)
Converting GSTimestamp type into a string representation gsFormatTime(GSTimestamp timestamp, GSChar *strBuf, size_t bufSize)
Converting a string representation into GSTimestamp type gsParseTime(const GSChar *str, GSTimestamp *timestamp)

Below is an example to convert GSTimestamp type values retrieved from rows into a string representation.

GSTimestamp GSTimestamp date;
    GSChar buf[GS_TIME_STRING_SIZE_MAX];

    gsGetRowFieldAsTimestamp(row, 0, &date);
    gsFormatTime(date, buf, GS_TIME_STRING_SIZE_MAX);

Advanced programming

Handling time-series data

Operations specific to time-series data can be executed on a time-series container. This section explains operations specific to time-series data.

Such operations can be executed using TQL or the methods listed below:

category name TQL operation method
Aggregation operation weighted average TIME_AVG gsAggregateTimeSeries
(Specify GS_AGGREGATION_WEIGHTED_AVERAGE)
Selection operation time immediately after TIME_NEXT gsGetRowByBaseTime
(Specify GS_TIME_OPERATOR_NEXT)
  time immediately after TIME_NEXT_ONLY gsGetRowByBaseTime
(Specify GS_TIME_OPERATOR_NEXT_ONLY)
  time immediately before TIME_PREV gsGetRowByBaseTime
(Specify GS_TIME_OPERATOR_PREVIOUS)
  time immediately before TIME_PREV_ONLY gsGetRowByBaseTime
(Specify GS_TIME_OPERATOR_PREVIOUS_ONLY)
Interpolation operation linear interpolation TIME_INTERPOLATED gsInterpolateTimeSeriesRow
  sampling TIME_SAMPLING gsQueryByTimeSeriesSampling

The following explains programming with TQL operations as an example.

Aggregation operation

TIME_AVG: weighted time average

For details on operations, see the section on TIME_AVG: weighted time average TIME_AVG: weighted time average” in the previous chapter on Java API.

[Notes]

TQL selection operations

A selection operation returns a row whose time of a row key in a time-series container matches the specified time (timestamp), based on the selection criteria on immediately before/after.

For details on operations, see the section on “selection operations” in the previous chapter on Java API.

[Notes]

TQL interpolation operations

This section shows how time-series data is interpolated.

For details on operations, see the section on “interpolation operations” in the previous chapter on Java API.

[Notes]

Handling array type data

Array type setter/getter methods are available for setting and registering array type data. Use the setter/getter method appropriate for the array data type to register and retrieve data.

category method
Boolean type array gsSetRowFieldByBoolArray(GSRow *row, int32_t column, const GSBool *fieldValue, size_t size)
gsGetRowFieldAsBoolArray(GSRow *row, int32_t column, const GSBool **fieldValue, size_t *size)
STRING type array gsSetRowFieldByStringArray(GSRow *row, int32_t column, const GSChar *const *fieldValue, size_t size)
gsGetRowFieldAsStringArray(GSRow *row, int32_t column, const GSChar *const **fieldValue, size_t *size)
BYTE type array gsSetRowFieldByByteArray(GSRow *row, int32_t column, const int8_t *fieldValue, size_t size)
gsGetRowFieldAsByteArray(GSRow *row, int32_t column, const int8_t **fieldValue, size_t *size)
SHORT type array gsSetRowFieldByShortArray(GSRow *row, int32_t column, const int16_t *fieldValue, size_t size)
gsGetRowFieldAsShortArray(GSRow *row, int32_t column, const int16_t **fieldValue, size_t *size)
INTEGER type array gsSetRowFieldByIntegerArray(GSRow *row, int32_t column, const int32_t *fieldValue, size_t size)
gsGetRowFieldAsIntegerArray(GSRow *row, int32_t column, const int32_t **fieldValue, size_t *size)
LONG type array gsSetRowFieldByLongArray(GSRow *row, int32_t column, const int64_t *fieldValue, size_t size)
gsGetRowFieldAsLongArray(GSRow *row, int32_t column, const int64_t **fieldValue, size_t *size)
FLOAT type array gsSetRowFieldByFloatArray(GSRow *row, int32_t column, const float *fieldValue, size_t size)
gsGetRowFieldAsFloatArray(GSRow *row, int32_t column, const float **fieldValue, size_t *size)
DOUBLE type array gsSetRowFieldByDoubleArray(GSRow *row, int32_t column, const double *fieldValue, size_t size)
gsGetRowFieldAsDoubleArray(GSRow *row, int32_t column, const double **fieldValue, size_t *size)
TIMESTAMP type array gsSetRowFieldByTimestampArray(GSRow *row, int32_t column, const GSTimestamp *fieldValue, size_t size)
gsGetRowFieldAsTimestampArray(GSRow *row, int32_t column, const GSTimestamp **fieldValue, size_t *size)

Below is a program for registering array type data.

// (1)
const GSChar *stringArray[4] = { "Sales", "Development", "Marketing", "Research" };
const int32_t integerArray[4] = { 39, 92, 18, 51 };


// (2)
ret = gsCreateRowByContainer(collection, &row);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsCreateRowByContainer\n");
  goto LABEL_ERROR;
}

// (3)
gsSetRowFieldByInteger(row, 0, 0);
gsSetRowFieldByStringArray(row, 1, stringArray, 4);
gsSetRowFieldByIntegerArray(row, 2, integerArray, 4);

// (4)
ret = gsPutRow(collection, NULL, row, NULL);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsPutRow\n");
  goto LABEL_ERROR;
}

gsCloseRow(&row)

Below is a program for retrieving array type data.

int32_t id;
const GSChar * const * stringArray;
const int32_t * integerArray;
size_t stringCount;
size_t integerCount;

// (1)
gsCreateRowByContainer(collection, &row);

// (2)
ret = gsGetRowByInteger(collection, 0, row, GS_FALSE, NULL);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetRowByInteger\n");
  goto LABEL_ERROR;
}

// (3)
gsGetRowFieldAsInteger(row, 0, &id);
gsGetRowFieldAsStringArray(row, 1, &stringArray, &stringCount);
gsGetRowFieldAsIntegerArray(row, 2, &integerArray, &integerCount);

printf("Get Row (id=%d,", id);

printf("[");
for( i = 0; i < stringCount; i++ ){
  if ( i != 0 ) printf(", ");
  printf("%s", *stringArray);
  stringArray++;
}
printf("],[");

for( i = 0; i < integerCount; i++ ){
  if ( i != 0 ) printf(", ");
  printf("%d", *integerArray);
  integerArray++;
}
printf("])\n");

gsCloseRow(&row);

[Notes]

Handling spatial type data

This section explains how to register and retrieve spatial type data.

Values are handled in Well-Known Text (WKT) format which represent spatial type data. WKT format is an ISO standard used to represent spatial data in a textual format.

Spatial type setter/getter methods are available for setting and registering spatial type data. Register/retrieve spatial type data using these setters/getters.

category method
Setting of spatial type data gsSetRowFieldByGeometry(GSRow *row, int32_t column, const GSChar *fieldValue)
Extraction of spatial type data gsGetRowFieldAsGeometry(GSRow *row, int32_t column, const GSChar **fieldValue)

Below is a program for registering spatial type data.

// (1)
ret = gsCreateRowByContainer(collection, &row);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsCreateRowByContainer\n");
  goto LABEL_ERROR;
}

// (2)
gsSetRowFieldByInteger(row, 0, 0);
gsSetRowFieldByGeometry(row, 1, "POINT(2 3)");

// (3)
ret = gsPutRow(collection, NULL, row, NULL);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsPutRow\n");
  goto LABEL_ERROR;
}

printf("Put Row (Geometry)\n");

gsCloseRow(&row);

Below is a program for retrieving spatial type data.

int32_t id;
const GSChar * geometry;

// (1)
gsCreateRowByContainer(collection, &row);

// (2)
ret = gsGetRowByInteger(collection, 0, row, GS_FALSE, NULL);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetRowByInteger\n");
  goto LABEL_ERROR;
}

// (3)
gsGetRowFieldAsInteger(row, 0, &id);
gsGetRowFieldAsGeometry(row, 1, &geometry);

printf("Get Row (id=%d, geometry=%s)\n", id, geometry);

gsCloseRow(&row);

[Notes]

Retrieving container information

This section explains the operation for retrieving information on containers.

Retrieving a list of container names

The following methods retrieve a list of the containers that have been created.

To retrieve a list of container names, use a controller “GSPartitionController” instance for retrieving partition information.

category method
Retrieving partition controllers gsGetPartitionController(GSGridStore *store, GSPartitionController **partitionController)
Retrieving the number of partitions gsGetPartitionCount(GSPartitionController *controller, int32_t *partitionCount)
Retrieving a list of container names gsGetPartitionContainerNames(GSPartitionController *controller, int32_t partitionIndex, int64_t start, const int64_t *limit, const GSChar *const **nameList, size_t *size)

A list of container names can be retrieved for each partition via a partition controller. Below is a program for retrieving a list of container names.

GSPartitionController * pc;
int32_t pcCount;
const GSChar *const * nameList;
size_t nameCount;

// (1)
ret = gsGetPartitionController(store, &pc);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetPartitionController\n");
  goto LABEL_ERROR;
}
gsGetPartitionCount(pc, &pcCount);


// (2)
for( i = 0; i < pcCount; i++) {
  ret = gsGetPartitionContainerNames(pc, i, 0, NULL, &nameList, &nameCount);
  if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetPartitionContainerNames\n");
    goto LABEL_ERROR;
  }

  for( j = 0; j < nameCount; j++ ){
    printf("%s\n", *nameList);
    nameList++;
  }
}

(2) If the third argument “start” is specified as 0, and the fourth argument “limit” as NULL using the method gsGetPartitionContainerNames, all containers on the specified partition will be retrieved. To limit the number of container names to retrieve, specify that number of limits to the fourth argument “limit”.

[Notes]

Retrieving schema information of a container

Retrieve information about containers from the container information “ContainerInfo.”

category method
Retrieving container information gsGetContainerInfo(GSGridStore *store, const GSChar *name, GSContainerInfo *info, GSBool *exists)

ContainerInfo contains setter methods to retrieve various information. Use whichever method that retrieves information needed. For details about methods, see GridDB Java API Reference.

The following is a program for retrieving information on container columns.

GSContainerInfo info = GS_CONTAINER_INFO_INITIALIZER;
GSBool exist;

// (1)
ret = gsGetContainerInfo(store, "SampleC_Info", &info, &exist);
if ( !GS_SUCCEEDED(ret) ){
  fprintf(stderr, "ERROR gsGetContainerInfo\n");
  goto LABEL_ERROR;
}
if ( !exist ){
  printf("Container not found\n");
  goto LABEL_ERROR;
}

// (2)
printf("Get ContainerInfo: \n    name=%s\n", info.name);
if ( info.type == GS_CONTAINER_COLLECTION ){
  printf("    type=Collection\n");
} else {
  printf("    type=TimeSeries\n");
}
printf("    rowKeyAssigned=%d\n", info.rowKeyAssigned);

printf("    columnCount=%d\n", info.columnCount);
for ( i = 0; i < info.columnCount; i++ ){
  printf("    column (%s, %d)\n", info.columnInfoList[i].name, info.columnInfoList[i].type);
}

Handling composite row keys

In processing for data registration and retrieval, operations can be performed by specifying composite row keys.

Below is a program for registering the data set with composite row keys. As composite row keys, specify the first INTEGER type and the second STRING type.

	const GSPropertyEntry props[] = {
		{ "notificationAddress", "239.0.0.1" },
		{ "notificationPort", "31999" },
		{ "clusterName", "myCluster" },
		{ "database", "public" },
		{ "user", "admin" },
		{ "password", "admin" },
		{ "applicationName", "SampleC" }
	};

	const size_t propCount = sizeof(props) / sizeof(*props);

	const int32_t rowKeyColumnList[] = { 0, 1 };
	const size_t rowKeyColumnCount = sizeof(rowKeyColumnList) / sizeof(*rowKeyColumnList);

	GSBool exists;

	ret = gsGetGridStore(gsGetDefaultFactory(), props, propCount, &store);
	if ( !GS_SUCCEEDED(ret) ){
		fprintf(stderr, "ERROR gsGetGridStore\n");
		goto LABEL_ERROR;
	}
	ret = gsGetContainerGeneral(store, "SampleC_CompositKey", &collection);
	if ( !GS_SUCCEEDED(ret) ){
		fprintf(stderr, "ERROR gsGetContainerGeneral\n");
		goto LABEL_ERROR;
	}
	gsCloseContainer(&container, GS_TRUE);
	printf("Connect to Cluster\n");

	info0.type = GS_CONTAINER_COLLECTION;
	info0.rowKeyColumnList = rowKeyColumnList;
	info0.rowKeyColumnCount = rowKeyColumnCount;

	columnInfo.name = "id";
	columnInfo.type = GS_TYPE_INTEGER;
	columnInfoList[0] = columnInfo;

	columnInfo.name = "productName";
	columnInfo.type = GS_TYPE_STRING;
	columnInfoList[1] = columnInfo;

	columnInfo.name = "count";
	columnInfo.type = GS_TYPE_INTEGER;
	columnInfoList[2] = columnInfo;

	info.columnCount = sizeof(columnInfoList) / sizeof(*columnInfoList);
	info.columnInfoList = columnInfoList;

	for ( i = 0; i < containerCount; i++ ){
		ret = gsPutContainerGeneral(store, containerNameList[i], &info0, GS_FALSE, &container);
		if ( !GS_SUCCEEDED(ret) ){
			fprintf(stderr, "ERROR gsPutCollectionGeneral\n");
			goto LABEL_ERROR;
		}
		printf("Sample data generation: Create Collection name=%s\n", containerNameList[i]);

		for ( j = 0; j < rowCount; j++ ){
			gsCreateRowByContainer(container, &row);
			gsSetRowFieldByInteger(row, 0, j);
			gsSetRowFieldByString(row, 1, nameList[j]);
			gsSetRowFieldByInteger(row, 2, numberList[i][j]);

			rowList[j] = row;
		}
		rowObj = (void *)rowList;
		ret = gsPutMultipleRows(container, rowObj, rowCount, NULL);
		if ( !GS_SUCCEEDED(ret) ){
			fprintf(stderr, "ERROR gsPutMultipleRows\n");
			goto LABEL_ERROR;
		}
		printf("Sample data generation: Put Rows count=%d\n", rowCount);

		gsCloseContainer(&container, GS_TRUE);
	}

Below is a program for retrieving data that meets the criteria specified by composite row keys. It specifies individual criteria to retrieve from the first container a row whose INTEGER-type row key value is “0” and whose STRING-type row key value matches “notebook PC,” and from the second container a row whose INTEGER-type row key value is “0” and whose STRING-type row key value matches “notebook PC,” in the same manner as the first container.

// (1)
for (i = 0; i < containerCount; i++) {
    ret = gsCreateRowKeyByStore(store, &info0, &rowKey);
    if (!GS_SUCCEEDED(ret)) {
        fprintf(stderr, "ERROR gsCreateRowKeyByStore\n");
        goto LABEL_ERROR;
    }

    ret = gsSetRowFieldByInteger(rowKey, 0, 0);
    if (!GS_SUCCEEDED(ret)) {
        fprintf(stderr, "ERROR gsSetRowFieldByInteger\n");
        goto LABEL_ERROR;
    }

    ret = gsSetRowFieldByString(rowKey, 1, "notebook PC");
    if (!GS_SUCCEEDED(ret)) {
        fprintf(stderr, "ERROR gsSetRowFieldByInteger\n");
        goto LABEL_ERROR;
    }

    ret = gsCreateRowKeyPredicateGeneral(store, &info0, &predicate);
    if (!GS_SUCCEEDED(ret)) {
        fprintf(stderr, "ERROR gsCreateRowKeyPredicateGeneral\n");
        goto LABEL_ERROR;
    }

    ret = gsAddPredicateGeneralKey(predicate, rowKey);
    if (!GS_SUCCEEDED(ret)) {
        fprintf(stderr, "ERROR gsAddPredicateGeneralKey\n");
        goto LABEL_ERROR;
    }

    predEntryValueList[i].containerName = containerNameList[i];
    predEntryValueList[i].predicate = predicate;

    predEntryList[i] = &predEntryValueList[i];
}

// (2)
ret = gsGetMultipleContainerRows(store, predEntryList, containerCount, &outEntryList, &outEntryCount);
if ( !GS_SUCCEEDED(ret) ){
    fprintf(stderr, "ERROR gsGetMultipleContainerRows\n");
    goto LABEL_ERROR;
}

// (3)
for (i = 0; i < outEntryCount; i++) {
    outEntry = outEntryList[i];
    for (j = 0; j < outEntry.rowCount; j++) {
        allRowList[i][j] = (GSRow*)outEntry.rowList[j];
    }
}

// (4)
for (i = 0; i < outEntryCount; i++) {
    for (j = 0; j < outEntryList[i].rowCount; j++) {
        row = allRowList[i][j];

        gsGetRowFieldAsInteger(row, 0, &id);
        gsGetRowFieldAsString(row, 1, &productName);
        gsGetRowFieldAsInteger(row, 2, &count);

        printf("MultiGet: container=%s, id=%d, productName=%s, count=%d\n", outEntryList[i].containerName, id, productName, count);
    }
}

[Notes]

— JDBC (NewSQL interface) —

Developing applications using JDBC

Building a development/execution environment

To develop JDBC applications, the following packages need to be installed.

package name file name description
griddb-ee-java-lib griddb-ee-java-lib-X.X.X-linux.x86_64.rpm
griddb-ee-java-lib_X.X.X_amd64.deb
contains Java API libraries (gridstore.jar, gridstore-conf.jar, gridstore-advanced.jar, gridstore-jdbc.jar).

Note: X.X.X. denotes the version of GridDB.

To develop or execute an application, specify the following library in the class path:

To secure communication between the GridDB cluster and the client, using the SSL function, additionally specify the following library in the class path.

Log functionality

GridDB JDBC has a functionality to output logs for each method call. These logs record what operations have been performed using JDBC, which means they can be used as a source of information for analyzing the cause of a problem, should a problem occur in the application. It is recommended to validate the log functionality.

To validate the log functionality, add the following library to the class path.

Second, place the SLF4J library on the class path; the log functionality uses SLF4J.

Third, add the logging library to the class path. The example below assumes the logging library uses Logback.

Fourth, place the logback settings file (logback.xml) in the directory, which in turn is placed in the class path.

The configuration that needs to be defined in the Logback settings file will be explained later.

log output

JDBC outputs the following logs:

Log outputs cover the following:

Logback settings file

JDBC log starts with the logger name “com.toshiba.mwcloud.gs.sql.Logger”. The output method of this logger is defined in the Logback settings file. A sample settings file is shown below:

<configuration scan="true" scanPeriod="10 minutes">

	<property name="logPath" value="/var/lib/gridstore/log" />

	<appender name="FILEJDBCLOG"
		class="ch.qos.logback.core.rolling.RollingFileAppender">
		<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
			<fileNamePattern>${logPath}/gridstore-jdbc-%d{yyyyMMdd}-%i.log</fileNamePattern>
			<timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP">
				<maxFileSize>100MB</maxFileSize>
			</timeBasedFileNamingAndTriggeringPolicy>
			<maxHistory>30</maxHistory>
		</rollingPolicy>

		<encoder>
			<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%t] [%-5p] %m%n</pattern>
		</encoder>
	</appender>

	<logger name="com.toshiba.mwcloud.gs.sql.Logger" level="TRACE" additivity="false">
		<appender-ref ref="FILEJDBCLOG" />
	</logger>

	<root level="info">
	</root>
</configuration>

The sample above outputs the JDBC log in the log file in the file with the following name:

Below is an example of log outputs.

2019-03-08 11:32:13.008 [main] [TRACE] [Trace Start] pid=16112 SQLConnection::prepareStatement()
2019-03-08 11:32:13.011 [main] [TRACE]   [argument]  pid=16112 String=select * from Collection_NoPart_0001 where id = ? and integercol = ?
2019-03-08 11:32:13.049 [main] [TRACE]   [return]    pid=16112 $Proxy3=com.toshiba.mwcloud.gs.sql.internal.SQLPreparedStatement@37b79249
2019-03-08 11:32:13.049 [main] [TRACE] [Trace End]   pid=16112 SQLConnection::prepareStatement()
2019-03-08 11:32:13.049 [main] [TRACE] [Trace Start] pid=16112 SQLPreparedStatement::setString()
2019-03-08 11:32:13.049 [main] [TRACE]   [argument]  pid=16112 Integer=1
2019-03-08 11:32:13.049 [main] [TRACE]   [argument]  pid=16112 String=ID0005
2019-03-08 11:32:13.049 [main] [TRACE] [Trace End]   pid=16112 SQLPreparedStatement::setString()
2019-03-08 11:32:13.050 [main] [TRACE] [Trace Start] pid=16112 SQLPreparedStatement::setInt()
2019-03-08 11:32:13.050 [main] [TRACE]   [argument]  pid=16112 Integer=2
2019-03-08 11:32:13.050 [main] [TRACE]   [argument]  pid=16112 Integer=10006
2019-03-08 11:32:13.050 [main] [TRACE] [Trace End]   pid=16112 SQLPreparedStatement::setInt()
2019-03-08 11:32:13.050 [main] [TRACE] [Trace Start] pid=16112 SQLPreparedStatement::executeQuery()
2019-03-08 11:32:13.060 [main] [TRACE]   [return]    pid=16112 SQLResultSet=com.toshiba.mwcloud.gs.sql.internal.SQLResultSet@52e53663
2019-03-08 11:32:13.060 [main] [TRACE] [Trace End]   pid=16112 SQLPreparedStatement::executeQuery()
2019-03-08 11:32:13.061 [main] [TRACE] [Trace Start] pid=16112 SQLConnection::close()
2019-03-08 11:32:13.062 [main] [TRACE] [Trace End]   pid=16112 SQLConnection::close()

Executing a sample program

This section explains how to compile and run a sample program.

To compile and run a sample program, add the library gridstore-jdbc.jar to the class path.

list of sample programs

category program name description container name to create
Connecting to a cluster JDBCConnect.java connects to a cluster using the multicast method and then disconnects the connection. -
Executing an SQL (container creation and row registration) JDBCCreateTableInsert.java creates a container and registers a row using SQL SampleJDBC_Create
Executing an SQL (search) JDBCSelect.java searches for rows in an SQL SampleJDBC_Select
Executing a prepared statement JDBCPreparedStatement.java creates a time-series container by specifying a schema using a method SampleJDBC_Prepared
Handling binary data JDBCBlobData.java handles binary data SampleJDBC_BlobData
Retrieving metadata JDBCMetaData.java retrieves metadata -

Basic programming

The JDBC provided by GridDB is compatible with the JDBC standard, but some features are not supported by the GridDB JDBC and some differences exist between the two. For details, see GridDB JDBC Driver User Guide.

Connecting to a cluster

This section explains how to connect to a cluster using the JDBC DriverManaget interface.

To connect to a cluster, use one of the methods below:

category method specification of the user and password
connection DriverManager.getConnection(String url) Specify the user and password in the URL.
URL format: http://…&user=(user name)&password=(password)
connection DriverManager.getConnection(String url, String user, String password) Specify the user and password in the argument.
connection DriverManager.getConnection(String url, Properties info)
or
Connection Driver.connect(String url, Properties info)
Specify the user, password, application names, and other necessary data in the Properties.
Property keys
user: user name (required)
password: password (required)
applicationName: application name (optional)
loginTimeout: login timeout (optional)

Below is a connection program that uses DriverManager.getConnection to specify the user and password in the Properties.

import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.DriverManager;
import java.util.Properties;

public class JDBCConnect {

    public static void main(String[] args){
        try {
            String jdbcAddress = "239.0.0.1";
            String jdbcPort = "41999";
            String clusterName = "myCluster";
            String databaseName = "public";
            String username = "admin";
            String password = "admin";
            String applicationName = "SampleJDBC";

            // (1)
            String encodeClusterName = URLEncoder.encode(clusterName, "UTF-8");
            String encodeDatabaseName = URLEncoder.encode(databaseName, "UTF-8");

            // (2)
            String jdbcUrl = "jdbc:gs://"+jdbcAddress+":"+jdbcPort+"/"+encodeClusterName+"/"+encodeDatabaseName;

            Properties prop = new Properties();
            prop.setProperty("user", username);
            prop.setProperty("password", password);
            prop.setProperty("applicationName", applicationName);

            // (3)
            Connection con = DriverManager.getConnection(jdbcUrl, prop);

            System.out.println("Connect to cluster");

            // (4)
            con.close();
            System.out.println("success!");

        } catch ( Exception e ){
            e.printStackTrace();
        }
    }
}

URL format for connection

This section explains the URL format to be specified during connection. The URL format varies depending on how to connect to clusters. You need to specify the connection address of a cluster, a cluster name, database name, and other necessary data in the URL, of which the cluster name and database name require URL encoding.

multicast method

fixed list method

provider method

Setting login timeout

This section shows how to set login timeout during connection. Two methods are available for settings: one is to set the settings on an entire driver and the other is to set the settings while obtaining a connection. In the latter case, information on login timeout is propagated only to the connection obtained at that particular time.

category method
Settings on an entire driver void DriverManager.setLoginTimeout(int seconds)
Settings on a connection Connection DriverManager.getConnection(String url, Properties info)
Connection Driver.connect(String url, Properties info)

Transaction control

JDBC does not support transaction control. In operations including INSERT for data registration, rows are automatically committed at the time of executing SQL statements.

ex.)

Statement stmt = con.createStatement();
stmt.executeUpdate("CREATE TABLE sqlCollection ( id integer, value string )");

int ret0 = stmt.executeUpdate("INSERT INTO sqlCollection values (0, 'test0')");

int ret1 = stmt.executeUpdate("INSERT INTO sqlCollection values "+
                            "(1, 'test1'),(2, 'test2'),(3, 'test3'),(4, 'test4')");

[Notes]

Executing an SQL (container creation and row registration)

Below is a program for executing an SQL to create containers and register rows.

import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.util.Properties;

public class JDBCCreateTableInsert {

    public static void main(String[] args){
        try {
            String jdbcAddress = "239.0.0.1";
            String jdbcPort = "41999";
            String clusterName = "myCluster";
            String databaseName = "public";
            String username = "admin";
            String password = "admin";
            String applicationName = "SampleJDBC";

            String encodeClusterName = URLEncoder.encode(clusterName, "UTF-8");
            String encodeDatabaseName = URLEncoder.encode(databaseName, "UTF-8");

            String jdbcUrl = "jdbc:gs://"+jdbcAddress+":"+jdbcPort+"/"+encodeClusterName+"/"+encodeDatabaseName;

            Properties prop = new Properties();
            prop.setProperty("user", username);
            prop.setProperty("password", password);
            prop.setProperty("applicationName", applicationName);

            Connection con = DriverManager.getConnection(jdbcUrl, prop);


            // (1)
            Statement stmt = con.createStatement();

            stmt.executeUpdate("DROP TABLE IF EXISTS SampleJDBC_Create");

            // (2)
            stmt.executeUpdate("CREATE TABLE SampleJDBC_Create ( id integer PRIMARY KEY, value string )");
            System.out.println("SQL Create Table name=SampleJDBC_Create");

            // (3)
            int ret0 = stmt.executeUpdate("INSERT INTO SampleJDBC_Create values (0, 'test0')");
            System.out.println("SQL Insert count=" + ret0);

            int ret1 = stmt.executeUpdate("INSERT INTO SampleJDBC_Create values "+
                                        "(1, 'test1'),(2, 'test2'),(3, 'test3'),(4, 'test4')");
            System.out.println("SQL Insert count=" + ret1);


            stmt.close();
            con.close();
            System.out.println("success!");

        } catch ( Exception e ){
            e.printStackTrace();
        }
    }
}

“(1) Creates a statement. The return value for container creation is 0 if the execution is successful; the return value for row registration is the number of registered rows.

To search using SQL, use the Statement.executeQuery method.

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT * from SampleJDBC_Select where ID > 2");

while( rs.next() ){
  int id = rs.getInt(1);
  String value = rs.getString(2);
  System.out.println("SQL row(id=" + id + ", value=" + value + ")");
}

The program above executes search using executeQuery and fetches the resulting rows using ResultSet.next. It also obtains the row values using the getter that corresponds to the data type.

Use Statement.setFetchSize or ResultSet.setFetchSize to give the JDBC driver a hint about the number of rows to obtain, as below.

ResultSet rs = stmt.executeQuery("SELECT * from SampleJDBC_Select where ID > 2");
stmt.setFetchSize(1000);

[Notes]

Executing a prepared statement

The following program performs search using a prepared statement.

PreparedStatement pstmt = con.prepareStatement("SELECT * from SampleJDBC_Prepared where ID > ?");

pstmt.setInt(1, 3);

ResultSet rs = pstmt.executeQuery();

while( rs.next() ){
  int id = rs.getInt(1);
  String value = rs.getString(2);
  System.out.println("SQL row(id=" + id + ", value=" + value + ")");
}

Handling binary data

Registering binary data

Use the PreparedStatement interface to register binary data.

Create PreparedStatement in the INSERT statement for registering rows and set binary data using setBlob(int parameterIndex, Blob x) to register them. The PreparedStatement interface contains a variety of methods to set binary data; however, GridDB JCBc only supports setBlob(int parameterIndex, Blob x).

A Blob object uses a class that contains Blob, such as SerialBlob. createBlob() in the Connection interface for creating a Blob object is yet to be supported.

stmt.executeUpdate("CREATE TABLE SampleJDBC_BlobData ( id integer PRIMARY KEY, data blob )");
stmt.close();

PreparedStatement pstmt = con.prepareStatement("INSERT INTO SampleJDBC_BlobData(id, data) VALUES(?, ?)");

File file = new File("JDBCBlobData.class");
FileInputStream fis = new FileInputStream(file);
byte[] b = new byte[1];
ByteArrayOutputStream baos = new ByteArrayOutputStream();
while (fis.read(b) > 0) {
    baos.write(b);
}
baos.close();
fis.close();
b = baos.toByteArray();

SerialBlob serialBlob = new SerialBlob(b);
pstmt.setBlob(2,  serialBlob);
pstmt.setInt(1, 0);

pstmt.executeUpdate();
pstmt.close();

[Notes]

Retrieving binary data

Use getBinaryStream and getBlob in ResultSet to retrieve binary data.

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM SampleJDBC_BlobData WHERE id = 0");

while( rs.next() ){
  InputStream input = rs.getBinaryStream(2);
  FileOutputStream output = new FileOutputStream("jdbc_output");
  int c;
  while((c=input.read())!=-1){
    output.write(c);
  }
  input.close();
  output.close();
}

Retrieving metadata

The DatabaseMetaData interface and the ResultSetMetaData interface allow you to retrieve a list of container names, schema information of a container, index information, and column information in search results.

For details about methods, see GridDB JDBC Driver User Guide.

Retrieving a list of container names

The program blow uses DatabaseMetaData.getTables to retrieve a list of container names. You can specify a filtering condition using wildcards to refine your search results for container names.

DatabaseMetaData meta = con.getMetaData();

System.out.println("DatabaseMetadata.getTables  null");

ResultSet rs = meta.getTables(null, null, null, null);
while( rs.next() ){
  String name = rs.getString("TABLE_NAME");
  String type = rs.getString("TABLE_TYPE");
  System.out.println("  (name=" + name + ", type=" + type +")");
}
rs.close();

System.out.println("DatabaseMetadata.getTables SampleJDBC\_%");

rs = meta.getTables(null, null, "SampleJDBC\_%", null);
while( rs.next() ){
  String name = rs.getString("TABLE_NAME");
  String type = rs.getString("TABLE_TYPE");
  System.out.println("  (name=" + name + ", type=" + type +")");
}
rs.close();

Retrieving schema information of a container

The program below uses DatabaseMetadata.getColumns to retrieve schema information of a container. Information including column names, data types, and NOT NULL limitations can be retrieved.

DatabaseMetaData meta = con.getMetaData();

System.out.println("DatabaseMetadata.getColumns  SampleJDBC_Meta1");

rs = meta.getColumns(null, null, "SampleJDBC_Meta1", null);
while( rs.next() ){
    String name = rs.getString("TABLE_NAME");
    String columnName = rs.getString("COLUMN_NAME");
    int columnDataType = rs.getInt("DATA_TYPE");
    String columnTypeName = rs.getString("TYPE_NAME");
    int nullable = rs.getInt("NULLABLE");
    String isNullable = rs.getString("IS_NULLABLE");
    System.out.println("  (name=" + name + ", columnName=" + columnName
            + ", dataType=" + columnDataType + ", typeName=" + columnTypeName
            + ", nullable="+nullable+", isNullable="+isNullable+")");
}
rs.close();

Retrieving metadata in the search results.

Use the ResultSetMetaData interface to retrieve the metadata in the SQL search results ResultSet. Metadata such as column names and data types can be retrieved.

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * from sqlCollection where ID > 2");

ResultSetMetaData rsMeta = rs.getMetaData();

for ( int i = 1; i <= rsMeta.getColumnCount(); i++ ){
    String columnName = rsMeta.getColumnName(i);
    String columnLabelName = rsMeta.getColumnLabel(i);
    String columnTypeClassName = rsMeta.getColumnClassName(i);
    int columnType = rsMeta.getColumnType(i);
    String columnTypeName = rsMeta.getColumnTypeName(i);
    System.out.println("columnName="+columnName+", columnLabelName="+columnLabelName
            + ", columnTypeClassName="+columnTypeClassName+", columnType="+columnType
            + ", columnTypeName="+columnTypeName);
}

Handling containers having data types not supported by JDBC.

JDBC does not support spatial types (Geometry type) and array types among GridDB data types. This section explains how applications behave when accessing containers with these data types of columns using JDBC.

[Notes]

Executing an SQL (row registration)

If containers have spatial or array columns, the rows cannot be registered. Even if you specify in the INSERT statement for registering rows, only those column values of the data types that are within the supported range, you cannot register rows.

Below is a program for executing an INSERT statement that specifies only columns id and double for containers having the following four columns: This program returns an error.

Statement stmt = con.createStatement();
stmt.executeUpdate("INSERT INTO collection_type (id, double) VALUES (1, 192.3)");
// ->SQLException

Executing an SQL (search)

If you search for containers having spatial or array columns, NULL is always returned as a result of retrieving the values of those columns. The ResultSet interface does not have a getter exclusively for data types, but you can use getObject to retrieve the values.

Below is a program for searching for containers having the following four columns:

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM collection_type");

while( rs.next() ){
    int id = rs.getInt(1);
    Object geometry = rs.getObject(2);  // NULL
    Object string_array = rs.getObject(3);  // NULL
}

In Geometry type columns and String type array columns, NULL is returned as a column value.

Retrieving metadata

If you retrieve column information in the DatabaseMetadata interface, the name of the data type UNKNOWN and the value of the data type Types.OTHER will be retuned spatial and array columns that are not currently supported.

— Appendix —

Detailed features within the support range of the APIs

Connection features

GridDB features Java API C API JDBC
Connection using the multicast method
connecting using the fixed list method
connection using the provider method
option settings during connection (database)
option settings during connection (login timeout)
option settings during connection (transaction timeout)
option settings during connection (failover timeout)
option settings during connection (query timeout)
option settings during connection (data consistency)
option settings during connection (container cache)
option settings during connection (definition of data affinity patterns)
option settings during connection (authentication method)
option settings during connection (SSL communication)
option settings during connection (address of the interface to receive the multicast packets from)
loading of the client properties file
maximum connection pool size settings

container features

The support coverage for the features of containers (not including partitioning containers) is given below:

GridDB features Java API C API JDBC
container creation (schema definition by method) ○ GridStore.putContainer ○ gsPutContainerGeneral ○(SQL) CREATE TABLE
container creation (schema definition by class) ○ GridStore.putContainer ○ gsPutContainer
container deletion ○ GridStore.dropContainer ○ gsDropContainer ○(SQL) DROP TABLE
column addition ○ GridStore.putContainer ○ gsPutContainer
gsPutContainerGeneral
○(SQL) ALTER TABLE
column deletion ○ GridStore.putContainer ○ gsPutContainer
gsPutContainerGeneral
index (without name) creation ○ Container.createIndex ○ gsCreateIndex
index (with name) creation ○ Container.createIndex ○ gsCreateIndexDetail ○(SQL) CREATE INDEX
index deletion ○ Container.dropIndex ○ gsDropIndex
gsDropIndexDetail
○(SQL) DROP INDEX
Option settings for container creation (data affinity) ○ ContainerInfo.setDataAffinity
GSContainerInfo.dataAffinity
○(SQL) CREATE TABLE
Option settings for container creation (node affinity) ○ Specify by container name ○ Specify by container name ○(SQL) Specify by container name
Option settings for container creation (NOT NULL limitations) ○ ColumnInfo ○ GSColumnInfo.options ✓(SQL)
Retrieval of container objects ○ GridStore.getContainer ○ gsGetContainerGeneral
Retrieval of container column information ○ Container.getContainerInfo ○ gsGetContainerInfo
Retrieval of container index information ○ Container.getIndexInfo ○ gsGetContainerInfo
row retrieval (by specifying a row key) ○ Container.get(K key) ○ gsGetRow ✓(SQL)
row retrieval (lock reference) ○ Container.get(K key, boolean forUpdate) ○ gsGetRowForUpdate
row registration ○ Container.put(R row) ○ gsPutRow ✓(SQL)
row registration (by specifying a row key) ○ Container.put(K key, R row) ○ gsPutRowGeneral ✓(SQL)
multiple row registration ○ Container.put(Collection rowCollection) ○ gsPutMultipleRows ✓(SQL)
row deletion ○ Container.remove ○ gsDeleteRow ✓(SQL)
row object creation ○ Container.createRow ○ gsCreateRowByContainer
gsCreateRowByStore
initial value (whether or not to use NULL) settings of a row object ○ ColumnInfo(..,boolean defaultValueNull,..)
NULL reference/settings for a row object ○ Row.setNull
Row.isNull
TQL query creation ○ Container.query ○ gsQuery
TQL fetch (without lock) ○ Query.fetch ○ gsFetch
TQL fetch (with lock) ○ Query.fetch ○ gsFetch
Retrieval of the number of TQL results ○ RowSet.size ○ gsGetRowSetSize
TQL cursor check ○ RowSet.hasNext ○ gsHasNextRow
TQL cursor movement ○ RowSet.next ○ gsGetNextRow
updating of a row at the position a TQL cursor ○ RowSet.update ○ gsUpdateCurrentRow
deletion of a row at the position a TQL cursor ○ RowSet.remove ○ gsDeleteCurrentRow
SQL execution
commit mode settings ○ Container.setAutoCommit ○ gsSetAutoCommit
commit ○ Container.commit ○ gsCommit
abort ○ Container.abort ○ gsAbort
data flash ○ Container.flush ○ gsFlush
Registering a row in multiple containers ○ GridStore.multiPut ○ gsPutMultipleContainerRows
Retrieving rows from multiple containers ○ GridStore.multiGet ○ gsGetMultipleContainerRows
Executing a TQL on multiple containers ○ GridStore.fetchAll ○ gsFetchAll

Features specific to time-series containers

GridDB features Java API C API JDBC
row retrieval (by specifying adjacent time) ○ TimeSeries.get ○ gsGetRowByBaseTime
row retrieval (aggregation operation) ○ TimeSeries.aggregate ○ gsAggregateTimeSeries
row retrieval (interpolation operation) ○ TimeSeries.interpolate ○ gsInterpolateTimeSeriesRow
sampling query creation ○ TimeSeries.query ○ gsQueryByTimeSeriesSampling
row registration (Add a new row with the current time) ○ TimeSeries.append ○ gsAppendTimeSeriesRow

Features specific to collections

GridDB features Java API C API JDBC
query creation for spatial type search criteria ○ Collection.query(java.lang.String column, Geometry geometry, GeometryOperator geometryOp) ○ gsQueryByGeometry
query creation for spatial type search criteria (with an exclusion range) ○ Collection.query(java.lang.String column, Geometry geometryIntersection, Geometry geometryDisjoint) ○ gsQueryByGeometryWithDisjointCondition

Features of partitioning containers

The support coverage for the features of partitioning containers is given below:

GridDB features Java API C API JDBC
container creation (hash partitioning) ✓(SQL)
container creation (interval partitioning) ✓(SQL)
container creation (interval hash partitioning) ✓(SQL)
container deletion ✓(SQL)
column addition ✓(SQL)
column deletion
index (unnamed) creation/deletion
index (named) creation/deletion ✓(SQL)
Option settings for container creation (data affinity) ✓(SQL)
Option settings for container creation (node affinity)
Option settings for container creation (NOT NULL limitations) ✓(SQL)
Option settings for container creation (partitioning expiration) ✓(SQL)
Retrieval of container objects ○ GridStore.getContainer
Retrieval of container column information ○ Container.getContainerInfo
Retrieval of container index information ○ Container.getIndexInfo
row retrieval (by specifying a row key) ○ Container.get(K key) ✓(SQL)
row retrieval (lock reference)
row registration ○ Container.put(R row) ✓(SQL)
row registration (by specifying a row key)
multiple row registration ○ Container.put(Collection rowCollection) ✓(SQL)
row deletion ○ Container.remove(K key) ✓(SQL)
row object creation ○ Container.createRow
initial value (whether or not to use NULL) settings of a row object ○ ColumnInfo(..,boolean defaultValueNull,..)
NULL reference/settings for a row object ○ Row.setNull
Row.isNull
TQL query creation ○ Container.query
TQL fetch (without lock) ○ Query.fetch
TQL fetch (with lock)
Retrieval of the number of TQL results ○ RowSet.size
TQL cursor check ○ RowSet.hasNext
TQL cursor movement ○ RowSet.next
updating of a row at the position a TQL cursor
deletion of a row at the position a TQL cursor
SQL execution
commit mode settings
commit
abort
data flash ○ Container.flush
Registering a row in multiple containers ○ GridStore.multiPut
Retrieving rows from multiple containers ○ GridStore.multiGet
Executing a TQL on multiple containers ○ GridStore.fetchAll

Features specific to time-series containers

GridDB features Java API C API JDBC
row retrieval (by specifying adjacent time)
row retrieval (aggregation operation)
row retrieval (interpolation operation)
sampling query creation
row registration (Add a new row with the current time)

Features specific to collections

GridDB features Java API C API JDBC
query creation for spatial type search criteria
query creation for spatial type search criteria (with an exclusion range)

Other features

GridDB features Java API C API JDBC
Retrieving partition controllers ○ GridStore.getPartitionController ○ gsGetPartitionController
Retrieving the number of partitions ○ PartitionController. getPartitionCount ○ gsGetPartitionCount
Retrieving the number of containers for each partition ○ PartitionController. getContainerCount ○ gsGetPartitionContainerCount
Retrieving container names for each partition ○ PartitionController. getContainerNames ○ gsGetPartitionContainerNames
Retrieving a list of node addresses ○ PartitionController. getHosts ○ gsGetPartitionHosts
Retrieving the owner address ○ PartitionController. getOwnerHost ○ gsGetPartitionOwnerHost
Retrieving the current time ○ TimestampUtils.current ○ gsCurrentTime
Adding time ○ TimestampUtils.add ○ gsAddTime
Converting strings into Timestamp type ○ TimestampUtils.parse ○ gsParseTime
Converting Timestamp type into strings ○ TimestampUtils.format ○ gsFormatTime
Setting individual criteria for retrieving rows in multiple containers ○ RowKeyPredicate.add ○ gsAddPredicateKeyXXXXX
Setting range criteria for retrieving rows in multiple containers ○ RowKeyPredicate.setStart
RowKeyPredicate.setFinish
○ gsSetPredicateStartKeyXXXXX
gsSetPredicateFinishKeyXXXXX

How to specify property Java API properties using an external file

In Java API, there are two ways to specify properties for connecting to a cluster using external files, as shown below:

If an external file is used to specify properties, properties, including where to connect to, can be modified without modifying the application source.

Using file loading in Java Properties

Load a property file using the Properties object.

Properties prop = new Properties();
prop.load(new FileInputStream("connect.properties"));
GridStore store = GridStoreFactory.getInstance().getGridStore(prop);

Enter properties in the property file.

notificationAddress=239.0.0.1
notificationPort=31999
clusterName=myCluster
database=public
user=admin
password=admin

Using the “client properties file” of Java API.

Java API provides a functionality for automatically loading the “client properties file,” where properties on connection are entered.

Use the following library to establish a connection using this functionality.

[Notes]

Tips when using NoSQL interfaces

What happens if you create a container with a name that already exists?

If you create a container with the same name using putContainer, the same behavior as getContainer (retrieving a container) occurs, provided that the existing container and a container to be created have the same schema information including columns and row keys. However, if they have different schema information, an error occurs in container creation.

What happens if you register a row with a row key value that already exists?

If you register a row that has the same row key value as a row that already exists in a container with row keys, using the put operation, the existing row will be updated.

If you register a row in a container without row keys, using the put operation, a new row will be added.

What happens if you register a row which has a different definition from that of the container to register in?

An error occurs in row registration (put).

What happens if anomalies occur in the middle of multiple row registration?

In auto-commit mode, if any anomalies occur in the middle of multiple row registration (put(Collection rowCollection), multiPut), only a subset of rows may be registered.

Points to remember when creating a time-series container

You need to set TIMESTAMP type row keys in a time-series container.

For this reason, specify the TIMESTAMP type as the data type in the first column and validate row key settings.

If these requirements are not met, an error will occur in creating a container.

How to retrieve the latest or the oldest row in the time-series data

To retrieve the latest or the oldest row in the time-series data, use a selection operation.

This method minimizes the number of rows to access by refining row search using row key indexes for time-series containers, and thereby enables you to quickly retrieve rows.

In contrast, an ORDER BY statement in a TQL, namely, “SELECT * ORDER BY time-series column DESC LIMIT 1”, does not refine data and loads all row data, which leads to performance degradation.

Recommendations for applications in using the date and time functions.